934 resultados para Wind quintets (Bassoon, clarinet, flute, horn, oboe)
Resumo:
del Sige. Telemann
Resumo:
Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings.
Resumo:
von Telemann
Resumo:
von Teleman[n]. [Textverf.: Gottfried Simonis]
Resumo:
Simulating surface wind over complex terrain is a challenge in regional climate modelling. Therefore, this study aims at identifying a set-up of the Weather Research and Forecasting Model (WRF) model that minimises system- atic errors of surface winds in hindcast simulations. Major factors of the model configuration are tested to find a suitable set-up: the horizontal resolution, the planetary boundary layer (PBL) parameterisation scheme and the way the WRF is nested to the driving data set. Hence, a number of sensitivity simulations at a spatial resolution of 2 km are carried out and compared to observations. Given the importance of wind storms, the analysis is based on case studies of 24 historical wind storms that caused great economic damage in Switzerland. Each of these events is downscaled using eight different model set-ups, but sharing the same driving data set. The results show that the lack of representation of the unresolved topography leads to a general overestimation of wind speed in WRF. However, this bias can be substantially reduced by using a PBL scheme that explicitly considers the effects of non-resolved topography, which also improves the spatial structure of wind speed over Switzerland. The wind direction, although generally well reproduced, is not very sensitive to the PBL scheme. Further sensitivity tests include four types of nesting methods: nesting only at the boundaries of the outermost domain, analysis nudging, spectral nudging, and the so-called re-forecast method, where the simulation is frequently restarted. These simulations show that restricting the freedom of the model to develop large-scale disturbances slightly increases the temporal agreement with the observations, at the same time that it further reduces the overestimation of wind speed, especially for maximum wind peaks. The model performance is also evaluated in the outermost domains, where the resolution is coarser. The results demonstrate the important role of horizontal resolution, where the step from 6 to 2 km significantly improves model performance. In summary, the combination of a grid size of 2 km, the non-local PBL scheme modified to explicitly account for non-resolved orography, as well as analysis or spectral nudging, is a superior combination when dynamical downscaling is aimed at reproducing real wind fields.
Resumo:
Periodic comets move around the Sun on elliptical orbits. As such comet 67P/Churyumov-Gerasimenko (hereafter 67P) spends a portion of time in the inner solar system where it is exposed to increased solar insolation. Therefore given the change in heliocentric distance, in case of 67P from aphelion at 5.68 AU to perihelion at ~1.24 AU, the comet’s activity—the production of neutral gas and dust—undergoes significant variations. As a consequence, during the inbound portion, the mass loading of the solar wind increases and extends to larger spatial scales. This paper investigates how this interaction changes the character of the plasma environment of the comet by means of multifluid MHD simulations. The multifluid MHD model is capable of separating the dynamics of the solar wind ions and the pick-up ions created through photoionization and electron impact ionization in the coma of the comet. We show how two of the major boundaries, the bow shock and the diamagnetic cavity, form and develop as the comet moves through the inner solar system. Likewise for 67P, although most likely shifted back in time with respect to perihelion passage, this process is reversed on the outbound portion of the orbit. The presented model herein is able to reproduce some of the key features previously only accessible to particle-based models that take full account of the ions’ gyration. The results shown herein are in decent agreement to these hybrid-type kinetic simulations.
Resumo:
High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. At shorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.
Resumo:
Direct measurements of middle-atmospheric wind oscillations with periods between 5 and 50 days in the altitude range between mid-stratosphere (5 hPa) and upper mesosphere (0.02 hPa) have been made using a novel ground-based Doppler wind radiometer. The oscillations were not inferred from measurements of tracers, as the radiometer offers the unique capability of near-continuous horizontal wind profile measurements. Observations from four campaigns at high, mid and low latitudes with an average duration of 10 months have been analyzed. The dominant oscillation has mostly been found to lie in the extra-long period range (20–40 days), while the well-known atmospheric normal modes around 5, 10 and 16 days have also been observed. Comparisons of our results with ECMWF operational analysis model data revealed remarkably good agreement below 0.3 hPa but discrepancies above.
Resumo:
Welsch (Projektbearbeiter): Öffentliche Verwahrung des am Stadttheater Baden bei Wien tätigen Regisseurs Remay (Mayer?) gegen den mißlungenen Versuch der Herren Saphir und Handl (bzw. Hantl, Hentl), ihn aufgrund einer freimütigen Äußerung über die Journalisten Ebersberg, Endlich, Landsteiner und Raudnitz verhaften zu lassen
Resumo:
We analyse the variability of the probability distribution of daily wind speed in wintertime over Northern and Central Europe in a series of global and regional climate simulations covering the last centuries, and in reanalysis products covering approximately the last 60 years. The focus of the study lies on identifying the link of the variations in the wind speed distribution to the regional near-surface temperature, to the meridional temperature gradient and to the North Atlantic Oscillation. Our main result is that the link between the daily wind distribution and the regional climate drivers is strongly model dependent. The global models tend to behave similarly, although they show some discrepancies. The two regional models also tend to behave similarly to each other, but surprisingly the results derived from each regional model strongly deviates from the results derived from its driving global model. In addition, considering multi-centennial timescales, we find in two global simulations a long-term tendency for the probability distribution of daily wind speed to widen through the last centuries. The cause for this widening is likely the effect of the deforestation prescribed in these simulations. We conclude that no clear systematic relationship between the mean temperature, the temperature gradient and/or the North Atlantic Oscillation, with the daily wind speed statistics can be inferred from these simulations. The understand- ing of past and future changes in the distribution of wind speeds, and thus of wind speed extremes, will require a detailed analysis of the representation of the interaction between large-scale and small-scale dynamics.
Resumo:
Detecting lame cows is important in improving animal welfare. Automated tools are potentially useful to enable identification and monitoring of lame cows. The goals of this study were to evaluate the suitability of various physiological and behavioral parameters to automatically detect lameness in dairy cows housed in a cubicle barn. Lame cows suffering from a claw horn lesion (sole ulcer or white line disease) of one claw of the same hind limb (n=32; group L) and 10 nonlame healthy cows (group C) were included in this study. Lying and standing behavior at night by tridimensional accelerometers, weight distribution between hind limbs by the 4-scale weighing platform, feeding behavior at night by the nose band sensor, and heart activity by the Polar device (Polar Electro Oy, Kempele, Finland) were assessed. Either the entire data set or parts of the data collected over a 48-h period were used for statistical analysis, depending upon the parameter in question. The standing time at night over 12 h and the limb weight ratio (LWR) were significantly higher in group C as compared with group L, whereas the lying time at night over 12 h, the mean limb difference (△weight), and the standard deviation (SD) of the weight applied on the limb taking less weight were significantly lower in group C as compared with group L. No significant difference was noted between the groups for the parameters of heart activity and feeding behavior at night. The locomotion score of cows in group L was positively correlated with the lying time and △weight, whereas it was negatively correlated with LWR and SD. The highest sensitivity (0.97) for lameness detection was found for the parameter SD [specificity of 0.80 and an area under the curve (AUC) of 0.84]. The highest specificity (0.90) for lameness detection was present for Δweight (sensitivity=0.78; AUC=0.88) and LWR (sensitivity=0.81; AUC=0.87). The model considering the data of SD together with lying time at night was the best predictor of cows being lame, accounting for 40% of the variation in the likelihood of a cow being lame (sensitivity=0.94; specificity=0.80; AUC=0.86). In conclusion, the data derived from the 4-scale-weighing platform, either alone or combined with the lying time at night over 12 h, represent the most valuable parameters for automated identification of lame cows suffering from a claw horn lesion of one individual hind limb.