915 resultados para Utrecht, Union of, 1579.
Resumo:
In the title p-toluenesulfonate salt of the drug dapsone, C12H13N2O2S+ C7H7O3S-, the dihedral angle between the two aromatic rings of the dapsone monocation is 70.19(17)deg. and those between these rings and that of the p-toluenesulfonate anion are 72.34(17) and 46.43(17)deg. All amine and aminium H-atoms are involved in intermolecular N-H...O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as one of the sulfone O-atoms, giving a three-dimensional structure.
Resumo:
The application of robotics to protein crystallization trials has resulted in the production of millions of images. Manual inspection of these images to find crystals and other interesting outcomes is a major rate-limiting step. As a result there has been intense activity in developing automated algorithms to analyse these images. The very first step for most systems that have been described in the literature is to delineate each droplet. Here, a novel approach that reaches over 97% success rate and subsecond processing times is presented. This will form the seed of a new high-throughput system to scrutinize massive crystallization campaigns automatically. © 2010 International Union of Crystallography Printed in Singapore-all rights reserved.
Resumo:
When crystallization screening is conducted many outcomes are observed but typically the only trial recorded in the literature is the condition that yielded the crystal(s) used for subsequent diffraction studies. The initial hit that was optimized and the results of all the other trials are lost. These missing results contain information that would be useful for an improved general understanding of crystallization. This paper provides a report of a crystallization data exchange (XDX) workshop organized by several international large-scale crystallization screening laboratories to discuss how this information may be captured and utilized. A group that administers a significant fraction of the worlds crystallization screening results was convened, together with chemical and structural data informaticians and computational scientists who specialize in creating and analysing large disparate data sets. The development of a crystallization ontology for the crystallization community was proposed. This paper (by the attendees of the workshop) provides the thoughts and rationale leading to this conclusion. This is brought to the attention of the wider audience of crystallographers so that they are aware of these early efforts and can contribute to the process going forward. © 2012 International Union of Crystallography All rights reserved.
Someone else's boom but always our bust: Australia as a derivative economy, implications for regions
Resumo:
This paper examines the socio-economic impact of mineral and agricultural resource extraction on local communities and explores policy options for addressing them. An emphasis on the marketisation of services together with tight fiscal control has reinforced decline in many country communities in Australia and elsewhere. However, the introduction by the European Union of Regional Policy which emphasises ‘smart specialisation’ can enhance greatly the capacity of local people to generate decent livelihoods. For this to have real effect, the innovative state has to enable partnerships between communities, researchers and industry. For countries like Australia, this would be a substantive policy shift.
Resumo:
The title compound, C16H18N2O2, is an important precursor in the synthesis of 1,2,3,4-tetrahydropyrazinoindoles, which show excellent antihistamine, antihypertensive and central nervous system depressant properties. The carbethoxy group attached to C2 and the planar cyanoethyl group attached to N1 make dihedral angles of 11.0(4) and 75.0(3)degrees, respectively, with the mean plane of the indole ring, The C-C=N chain is linear with a bond angle of 179.3 (4)degrees.
Resumo:
The title compound, C15H11NO, consists of a planar isoquinolinone group to which a phenyl ring is attached in a twisted fashion [dihedral angle = 39.44 (4)degrees]. The crystal packing is dominated by intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds which define centrosymmetric dimeric entitities.
Resumo:
The title compound, C4H5N3O2, features an essentially planar molecule (r.m.s. deviation for all non-H atoms = 0.013 angstrom). The crystal structure is stabilized by intermolecular N-H center dot center dot center dot O hydrogen bonds and pi-pi stacking interactions (centroid centroid distance 3.882 angstrom).
Resumo:
The title molecule, C21H18O8, crystallizes in two crystal polymorphs, see also Nallasivam, Nethaji, Vembu & Jaswant [Acta Cryst. (2009), E65, o314-o315]. The molecules of both polymorphs differ by the conformation of the oxomethylacetate groups. The title molecules are rather planar compared to the molecules of the other polymorph. In the title molecule, one of the oxomethylacetate groups is disordered (occupancies of 0.6058/0.3942). The structures of both polymorphs are stabilized by C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions. Due to the planarity of the title molecules and similar intermolecular interactions, the title molecules are more densely packed than those of the other polymorph.
Resumo:
The title molecule, C21H18O8, crystallizes in two crystal polymorphs,see also Nallasivam, Nethaji, Vembu & Jaswant [Acta Cryst. (2009),E65, o312-o313]. The main difference between the two polymorphs is in the conformation of the oxomethylacetate groups with regard to the almost planar [total puckering amplitude 0.047 (2) angstrom] chromene ring. In the title compound, the best planes of the oxomethylacetate groups through the non-H atoms are almost perpendicular to the chromene ring [making dihedral angles of 89.61 (6) and 80.59 (5)degrees], while in the second polymorph the molecules are close to planar. Both crystal structures are stabilized by C-H center dot center dot center dot O.
Resumo:
In the title compound, C23H15ClFNOS, the isoquinoline system and the 4-chloro-3-fluorophenyl ring are aligned at 80.4 (1)degrees. The dihedral angle between the isoquinoline system and the pendant (unsubstituted) phenyl ring is 19.91 (1)degrees.
Resumo:
The title compound, C10H7Cl2NO, features a planar molecule, excluding the methyl H atoms [maximum deviation = 0.0385 (1) angstrom]. The crystal packing is stabilized by pi-pi stacking interactions across inversion centres [centroid-to-centroid distance = 3.736 (3) angstrom].
Resumo:
The title compound, C15H16O2, has a dihedral angle of 19.10 (5)degrees between the mean planes of the two benzene rings. There is an intramolecular O-H center dot center dot center dot O hydrogen bond and the C-C-C-C torsion angle across the bridge between the two rings is 173.13 (14)degrees. The molecules form intermolecular O-H center dot center dot center dot O hydrogen-bonded chains extending along the a axis. C-H center dot center dot center dot pi contacts are also observed between molecules within the chains.
Resumo:
The two molecules in the asymmetric unit of adenosine-5'-carboxylic acid, C10H11N5O5, exist as zwitterions with N1 protonated and the carboxyl groups ionized. Both molecules are in an anti conformation with glycosyl torsion angles of -161.4(3) and -155.5(3)degrees. The ribose moieties adopt a C3-endo-C2-exo twist conformation. The pseudo-rotation parameters are P = 0.01(1) and 6.58(1)degrees, and tau(m) = 36.2(2) and 34.6(2)degrees, for molecules A and B, respectively. The carboxyl groups of A and B are not in the standard g(+), g(-) or t conformations. Both Watson-Crick sites, N1 and N6, of the adenine bases are involved in a pair of hydrogen bonds with the dissociated carboxyl groups, forming a cyclic tetramer. The adenine base of molecule A stacks on the ribose O4' atom of a symmetry-related B molecule at a distance of 2.88 Angstrom; the adenine base of B stacks in an analogous way at a distance of 2.91 Angstrom.
Resumo:
The new furnace at the Materials Characterization by X-ray Diffraction beamline at Elettra has been designed for powder diffraction measurements at high temperature (up to 1373 K at the present state). Around the measurement region the geometry of the radiative heating element assures a negligible temperature gradient along the capillary and can accommodate either powder samples in capillary or small flat samples. A double capillary holder allows flow-through of gas in the inner sample capillary while the outer one serves as the reaction chamber. The furnace is coupled to a translating curved imaging-plate detector, allowing the collection of diffraction patterns up to 2[theta] [asymptotically equal to] 130°.