979 resultados para Transducer Excitation
Resumo:
We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.
Resumo:
A surface dielectric function of a semi-infinite plane-bounded metal is defined in the spirit of the plasmon-pole dielectric function of the bulk. It is modeled in such a way that the surface-plasmon dispersion relation is recovered for small momentum transfer. This function is employed to compute the image potential at all distances outside the surface. Interaction with bulk modes is neglected for simplicity and clarity. The interaction of a massive point charge with a metal surface is also considered in the context of a boson model for surface-plasmon excitation. We present a new definition of the image potential for this case.
Resumo:
This article describes the physiologic and neural mechanisms that cause neuromuscular fatigue in racquet sports: table tennis, tennis, squash, and badminton. In these intermittent and dual activities, performance may be limited as a match progresses because of a reduced central activation, linked to changes in neurotransmitter concentration or in response to afferent sensory feedback. Alternatively, modulation of spinal loop properties may occur because of changes in metabolic or mechanical properties within the muscle. Finally, increased fatigue manifested by mistimed strokes, lower speed, and altered on-court movements may be caused by ionic disturbances and impairments in excitation-contraction coupling properties. These alterations in neuromuscular function contribute to decrease in racquet sports performance observed under fatigue.
Resumo:
We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring
Resumo:
We compute the density-fluctuation spectrum of spherical 4HeN shells adsorbed on the outer surface of Cn fullerenes. The excitation spectrum is obtained within the random-phase approximation, with particle-hole elementary excitations and effective interaction extracted from a density-functional description of the shell structure. The presence of one or two solid helium layers adjacent to the adsorbing fullerene is phenomenologically accounted for. We illustrate our results for a selection of numbers of adsorbed atoms on C20, C60, and C120. The hydrodynamical model that has proven successful to describe helium excitations in the bulk and in restricted geometries permits to perform a rather exhaustive analysis of various fluid spherical systems, namely, spheres, cavities, free bubbles, and bound shells of variable size.
Resumo:
The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are studied. Using exact diagonalization of small systems, we compute the energies and number of edge excitations, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the state identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An experimental way of detecting these correlated states is also discussed.
Resumo:
The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.
Resumo:
Information on level density for nuclei with mass numbers A?20250 is deduced from discrete low-lying levels and neutron resonance data. The odd-mass nuclei exhibit in general 47 times the level density found for their neighboring even-even nuclei at the same excitation energy. This excess corresponds to an entropy of ?1.7kB for the odd particle. The value is approximately constant for all midshell nuclei and for all ground state spins. For these nuclei it is argued that the entropy scales with the number of particles not coupled in Cooper pairs. A simple model based on the canonical ensemble theory accounts qualitatively for the observed properties.
Resumo:
The influence of Delta isobar components on the ground-state properties of nuclear systems is investigated for nuclear matter as well as finite nuclei. Many-body wave functions, including isobar configurations and binding energies, are evaluated employing the framework of the coupled-cluster theory. It is demonstrated that the effect of isobar configurations depends in a rather sensitive way on the model used for the baryon-baryon interaction. As examples for realistic baryon-baryon interactions with explicit inclusion of isobar channels we use the local (V28) and nonlocal meson-exchange potentials (Bonn2000) but also a model recently developed by the Salamanca group, which is based on a quark picture. The differences obtained for the nuclear observables are related to the treatment of the interaction, the pi-exchange contributions in particular, at high momentum transfers.
Resumo:
The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework, taking into account thermal and expansion effects. A finite-range momentum and density-dependent two-body effective interaction is employed for this purpose. The role of mass, isospin, and equation of state (EOS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.