942 resultados para TYROSINE-HYDROXYLASE
Resumo:
The incorporation of [2-14C]mevalonate into nonsaponifiable lipids by rat brain homogenates is inhibited by phenolic acids derived from tyrosine. The phenyl acids derived from phenylalanine are inhibitory only at very high concentrations compared with phenolic acids. The brain is more sensitive to inhibition by the phenolic acids than the liver. These studies indicate a possible role for phenolic acids in the impairment of cerebral sterol metabolism in phenylketonuria.
Resumo:
Some of the enzyme systems in the formation of p-hydroxybenzoate from tyrosine have been studied in the rat liver in vitro. The conversion of p-hydroxycinnamate into p-hydroxybenzoate, which was found in rat liver mitochondria showed a number of differences when compared with the b-oxidation of fatty acids. Studies with p-hydroxy[U-14C]cinnamate indicated that 14CO2 was released during the formation of p-hydroxybenzoate. The formation of p-hydroxycinnamate from tyrosine of p-hydroxyphenyl-lactate could not be demonstrated in vitro. The interconversion of p-hydroxycinnamate and p-hydroxyphenylpropionate was demonstrated in rat liver mitochondria.
Resumo:
Pseudomonas aeruginosa tRNA was treated with iodine, CNBr and N-ethylmaleimide,three thionucleotide-specific reagents. Reaction with iodine resulted in extensive loss of acceptor activity by lysine tRNA, glutamic acid tRNA, glutamine tRNA, serine tRNA and tyrosine tRNA. CNBr treatment resulted in high loss of acceptor ability by lysine tRNA, glutamic acid tRNA and glutamine tRNA. Only the acceptor ability of tyrosine tRNA was inhibited up to 66% by N-ethylmaleimide treatment, a reagent specific for 4-thiouridine. By the combined use of benzoylated DEAE-cellulose and DEAESephadex columns, lysine tRNA of Ps. aeruginosa was resolved into two isoaccepting species, a major, tRNAL'y and a minor, tRNA'Ys. Co-chromatography of 14C-labelled tRNALYS and 3H-labelled tRNALy, on benzoylated DEAE-cellulose at pH4.5 gave two distinct, non-superimposable profiles for the two activity peaks, suggesting that they were separate species. The acceptor activity of these two species was inhibited by about 95% by iodine and CNBr. Both the species showed equal response to codons AAA and AAG and also for poly(A) and poly(A1,Gl) suggesting that the anticodon of these species was UUU. Chemical modification of these two species by iodine did not inhibit the coding response. The two species of lysine of Ps. aeruginosa are truly redundant in that they are indistinguishable either by chemical modification or by their coding response.
Resumo:
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via
Resumo:
Phenylalanine ammonia-lyase (EC 4.3.1.5) was purified to homogeneity from the acetone-dried powders of the mycelial felts of the plant pathogenic fungus Rhizoctonia solani. 2. A useful modification in protamine sulphate treatment to get substantial purification of the enzyme in a single-step is described. 3. The purified enzyme shows bisubstrate activity towards L-phenylalanine and L-tyrosine. 4. It is sensitive to carbonyl reagents and the inhibition is not reversed by gel filtration. 5. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography and sucrose-density-gradient centrifugation is around 330000. 6. The enzyme is made up of two pairs of unidentical subunits, with a molecular weight of 70000 (alpha) and 90000 (beta) respectively. 7. Studies on initial velocity versus substrate concentration have shown significant deviations from Michaelis-Menten kinetics. 8. The double-reciprocal plots are biphasic (concave downwards) and Hofstee plots show a curvilinear pattern. 9. The apparent Km value increases from 0.18 mM to as high as 5.0 mM with the increase in the concentration of the substrate and during this process the Vmax, increases by 2-2.5-fold. 10. The value of Hill coefficient is 0.5. 11. Steady-state rates of phenylalanine ammonia-lyase reaction in the presence of inhibitors like D-phenylalanine, cinnamic, p-coumaric, caffeic, dihydrocaffeic and phenylpyruvic acid have shown that only one molecule of each type of inhibitor binds to a molecule of the enzyme. These observations suggest the involvement of negative homotropic interactions in phenylalanine ammonia-lyase. 12. The enzyme could not be desensitized by treatment with HgCl2, p-chloromercuribenzoic acid or by repeated freezing and thawing.
Resumo:
The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydratebinding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2- hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) family ligands: GDNF, neurturin, persephin and artemin, signal through a receptor tyrosine kinase Ret by binding first to a co-receptor (GFRα1-4) that is attached to the plasma membrane. The GDNF family factors can support the survival of various peripheral and central neuronal populations and have important functions also outside the nervous system, especially in kidney development. Activating mutations in the RET gene cause tumours in neuroendocrine cells, whereas inactivating mutations in RET are found in patients with Hirschsprung s disease (HSCR) characterized by loss of ganglionic cells along the intestine. The aim of this study was to examine the in vivo functions of neurturin receptor GFRα2 and persephin receptor GFRα4 using knockout (KO) mice. Mice lacking GFRα2 grow poorly after weaning and have deficits in parasympathetic and enteric innervation. This study shows that impaired secretion of the salivary glands and exocrine pancreas contribute to growth retardation in GFRα2-KO mice. These mice have a reduced number of intrapancreatic neurons and decreased cholinergic innervation of the exocrine pancreas as well as reduced excitatory fibres in the myenteric plexus of the small intestine. This study also demonstrates that GFRα2-mediated Ret signalling is required for target innervation and maintenance of soma size of sympathetic cholinergic neurons and sensory nociceptive IB4-binding neurons. Furthermore, lack of GFRα2 in mice results in deficient perception of temperatures above and below thermoneutrality and in attenuated inflammatory pain response. GFRα4 is co-expressed with Ret predominantly in calcitonin-producing thyroid C-cells in the mouse. In this study GFRα4-deficient mice were generated. The mice show no gross developmental deficits and have a normal number of C-cells. However, young but not adult mice lacking GFRα4 have a lower production of calcitonin in thyroid tissue and consequently, an increased bone formation rate. Thus, GFRα4/Ret signalling may regulate calcitonin production. In conclusion, this study reveals that GFRα2/Ret signalling is crucial for the development and function of specific components of the peripheral nervous system and that GFRα4-mediated Ret signalling is required for controlling transmitter synthesis in thyroid C-cells.
Resumo:
The circulatory system consists of the blood and lymphatic vessels. While blood vessels transport oxygen, cells, and nutrients to tissues, the lymphatic vessels collect fluid, cells, and plasma proteins from tissues to return back to the blood circulation. Angiogenesis, the growth of new blood vessels from pre-existing ones, is an important process involved in several physiological conditions such as inflammation, wound healing, and embryonic development. Furthermore, angiogenesis is found in many pathological conditions such as atherosclerosis and the growth and differentiation of solid tumors. Many tumor types spread via lymphatic vessels to form lymph node metastasis. The elucidation of the molecular players coordinating development of the vascular system has provided an array of tools for further insight of the circulatory system. The discovery of the Vascular Endothelial Growth Factor (VEGF) family members and their tyrosine kinase receptors (VEGFRs) has facilitated the understanding of the vasculature in different physiological and pathological situations. The VEGFRs are expressed on endothelial cells and mediate the growth and maintenance of both the blood and lymphatic vasculatures. This study was undertaken to address the role of VEGFR-2 specific signaling in maturation of blood vessels during neoangiogenesis and in lymphangiogenesis. We also wanted to differentiate between VEGFR-2 and VEGFR-3 specific signaling in lymphangiogenesis. We found that specific VEGFR-2 stimulation alone by gene therapeutic methods is not sufficient for production of mature blood vessels. However, VEGFR-2 stimulation in combination with expression of platelet-derived growth factor D (PDGF-D), a recently identified member of the PDGF growth factor family, was capable of stabilizing these newly formed vessels. Signaling through VEGFR-3 is crucial during developmental lymphangiogenesis, but we showed that the lymphatic vasculature becomes independent of VEGFR-3 signaling after the postnatal period. We also found that VEGFR-2 specific stimulation cannot rescue the loss of lymphatic vessels when VEGFR-3 signaling is blocked and that VEGFR-2 specific signals promote lymphatic vessel enlargement, but are not involved in vessel sprouting to generate new lymphatic vessels in vivo, in contrast to the VEGFR-2 dependent sprouting observed in blood vessels. In addition, we compared the inhibitory effects of a small molecular tyrosine kinase inhibitor of VEGFR-2 vs. VEGFR-3 specific signaling in vitro and in vivo. Our results showed that the tyrosine kinase inhibitor could equally affect physiological and pathological processes dependent on VEGFR-2 and VEGFR-3 driven angiogenesis or lymphangiogenesis. These results provide new insights into the VEGFR specific pathways required for pre- and postnatal angiogenesis as well as lymphangiogenesis, which could provide important targets and therapies for treatment of diseases characterized by abnormal angiogenesis or lymphangiogenesis.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) and its family members neurturin (NRTN), artemin (ARTN) and persephin (PSPN) are growth factors, which are involved in the development, differentiation and maintenance of many neuron types. In addition, they function outside of the nervous system, e.g. in the development of kidney, testis and liver. GDNF family ligand (GFL) signalling happens through a tetrameric receptor complex, which includes two glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor (GFRα) molecules and two RET (rearranged during transfection) receptor tyrosine kinases. Each of the ligands binds preferentially one of the four GFRα receptors: GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The signal is then delivered by RET, which cannot bind the GFLs on its own, but can bind the GFL-GFRα complex. Under normal cellular conditions, RET is only phosphorylated on the cell surface after ligand binding. At least the GDNF-GFRα1 complex is believed to recruit RET to lipid rafts, where downstream signalling occurs. In general, GFRαs consist of three cysteine-rich domains, but all GFRα4s except for chicken GFRα4 lack domain 1 (D1). We characterised the biochemical and cell biological properties of mouse PSPN receptor GFRα4 and showed that it has a significantly weaker capacity than GFRα1 to recruit RET to the lipid rafts. In spite of that, it can phosphorylate RET in the presence of PSPN and contribute to neuronal differentiation and survival. Therefore, the recruitment of RET to the lipid rafts does not seem to be crucial for the biological activity of all GFRα receptors. Secondly, we demonstrated that GFRα1 D1 stabilises the GDNF-GFRα1 complex and thus affects the phosphorylation of RET and contributes to the biological activity. This may be important in physiological conditions, where the concentration of the ligand or the soluble GFRα1 receptor is low. Our results also suggest a role for D1 in heparin binding and, consequently, in the biodistribution of released GFRα1 or in the formation of the GFL-GFRα-RET complex. We also presented the crystallographic structure of GDNF in the complex with GFRα1 domains 2 and 3. The structure differs from the previously published ARTN-GFRα3 structure in three significant ways. The biochemical data verify the structure and reveal residues participating in the interactions between GFRα1 and GDNF, and preliminarily also between GFRα1 and RET and heparin. Finally, we showed that, the precursor of the oncogenic MEN 2B (multiple endocrine neoplasia type 2) form of RET gets phosphorylated already during its synthesis in the endoplasmic reticulum (ER). We also demonstrated that it associates with Src homology 2 domain-containing protein (SHC) and growth factor receptor-bound protein (GRB2) in the ER, and has the capacity to activate several downstream signalling molecules.
Resumo:
Within central nervous system, the simple division of chemical synaptic transmission to depolarizing excitation mediated by glutamate and hyperpolarizing inhibition mediated by γ-amino butyric acid (GABA), is evidently an oversimplification. The GABAa receptor (GABAaR) mediated responses can be of opposite sign within a single resting cell, due to the compartmentalized distribution of cation chloride cotransporters (CCCs). The K+/Cl- cotransporter 2 (KCC2), member of the CCC family, promotes K+ fuelled Cl- extrusion and sets the reversal potential of GABA evoked anion currents typically slightly below the resting membrane potential. The interesting ionic plasticity property of GABAergic signalling emerges from the short-term and long-term alterations in the intraneuronal concentrations of GABAaR permeable anions (Cl- and HCO3-). The short-term effects arise rapidly (in the time scale of hundreds of milliseconds) and are due to the GABAaR activation dependent shifts in anion gradients, whereas the changes in expression, distribution and kinetic regulation of CCCs are underlying the long-term effects, which may take minutes or even hours to develop. In this Thesis, the differences in the reversal potential of GABAaR mediated responses between dopaminergic and GABAergic cell types, located in the substantia nigra, were shown to be attributable to the differences in the chloride extrusion mechanisms. The stronger inhibitory effect of GABA on GABAergic neurons was due to the cell type specific expression of KCC2 whereas the KCC2 was absent from dopaminergic neurons, leading to a less prominent inhibition brought by GABAaR activation. The levels of KCC2 protein exhibited activity dependent alterations in hippocampal pyramidal neurons. Intense neuronal activity, leading to a massive release of brain derived neurotrophic factor (BDNF) in vivo, or applications of tyrosine receptor kinase B (TrkB) agonists BDNF or neurotrophin-4 in vitro, were shown to down-regulate KCC2 protein levels which led to a reduction in the efficacy of Cl- extrusion. The GABAergic transmission is interestingly involved in an increase of extracellular K+ concentration. A substantial increase in interstitial K+ tends to depolarize the cell membrane. The effects that varying ion gradients had on the generation of biphasic GABAaR mediated responses were addressed, with particular emphasis on the novel idea that the K+/Cl- extrusion via KCC2 is accelerated in response to a rapid accumulation of intracellular Cl-. The KCC2 inhibitor furosemide produced a large reduction in the GABAaR dependent extracellular K+ transients. Thus, paradoxically, both the inefficient KCC2 activity (via increased intracellular Cl-) and efficient KCC2 activity (via increased extracellular K+) may promote excitation.
Resumo:
The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.
Resumo:
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.
Resumo:
Neurotrophic factors play essential role in the development and functioning of the nervous system and other organs. Glial cell line-Derived Neurotrophic Factor (GDNF) family ligands (GFLs) are of particular interest because they promote the survival of dopaminergic neurons in vitro, in Parkinson s disease animal models and in patients. GDNF is also a potent survival factor for the central motoneurons and thus is considered as a potential lead for the treatment of amyotrophic lateral sclerosis. The survival promoting receptor complex for GFLs consists of a ligand-specific co-receptor, GFRα and a signal transducing module, receptor tyrosine kinase RET. At least GDNF and persephin, a GFL, have established functions outside central nervous system. GDNF is crucial for enteric nervous system and kidney development as well as for spermatogenesis. Persephin controls calcitonin secretion. Communication between cells often occurs in the extracellular matrix (ECM), a meshwork, which is secreted and deposited by the cells and is mainly composed of fibrillar proteins and polymerized sugars. We evaluated the relationship between GFLs and extracellular matrix components and demonstrated that three GFLs - GDNF, neurturin and artemin bind heparan sulfates with nanomolar affinities. The fourth member of the family - persephin binds these polysaccharides thousand times less tightly. GDNF, neurturin and artemin also bind with high affinity to heparan sulfate proteoglycan (HSPG) isolated from the nervous system, syndecan-3. GDNF signals through HSPGs, evoking Src family kinase activation. This signaling induces cell spreading, hippocampal neurite outgrowth in vitro and cellular migration. Specifically, GDNF signaling through syndecan-3 is important for embryonic cortical neuron migration. Syndecan-3-deficient mice, similarly to mice lacking GDNF, have less GABAergic neurons in their cortex, as compared to the wild-type mice. This fact provides indirect evidence that GDNF interaction with syndecan-3 is important for cortical brain development. Noteworthy, in non-neuronal tissues GFLs may signal via other syndecans. We also present the structural model for a GDNF co-receptor, GFRα1. The X-ray structure of the GFRα1 domain 3 was solved with 1.8 Å resolution, revealing a new protein fold. Later we also solved the structure of the truncated GFRα1 in the complex with GDNF and this model was confirmed by site-directed mutagenesis. In summary, our work contributed to the structural characterization of GFRα-based receptor complex and revealed a new receptor for GDNF, neurturin and artemin the HSPG syndecan-3. This information is critically important for the development of GFRα/RET agonists for the treatment of neurodegenerative diseases.
Resumo:
The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
Four GDNF ligands (GDNF, neurturin, artemin and persephin), and mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF) protect midbrain dopaminergic neurons that degenerate in Parkinson's disease. Each GDNF ligand binds a specific coreceptor GDNF family receptor α (GFRα), leading to the formation of a heterotetramer complex, which then interacts with receptor tyrosine kinase RET, the signalling receptor. The present thesis describes the structural and biochemical characterization of the GDNF2-GFRα12 complex and the MANF and CDNF proteins. Previous and current mutation data and comparison between GDNF-GFRα1 and artemin-GFRα3 binding interfaces show that N162GFRα1, I175GFRα1, V230GFRα1, Y120GDNF and L114GDNF are the specificity determinants among different ligand-coreceptor pairs. The structure suggests that sucrose octasulphate, a heparin mimic, interacts with a region R190-K202 within domain 2 of GFRα1. Mutating these residues on the GFRα1 surface, which are not in the GDNF binding region, affected RET phosphorylation, which provides a putative RET binding region in domain 2 and 3 of GFRα1. The structural comparison of the GDNF-GFRα1 and artemin-GFRα3 complexes shows a difference in bend angle between the ligand monomers. This variation in bend angle of the ligand may affect the kinetics of RET phosphorylation. To confirm that the difference is not due to crystallization artefacts, I crystallized the GDNF-GFRα1 complex without SOS in different cell dimensions. The structure of the second GDNF-GFRα1 complex is very similar to the previous one, suggesting that the difference between the artemin-GFRα3 and GDNF-GFRα1 complexes are intrinsic, not due to crystal packing. Finally, MANF and CDNF are bifunctional proteins with extracellular neurotrophic activity and ER resident cytoprotective role. The crystal structures of MANF and CDNF are presented here. Intriguingly, the structures of both the neurotrophic factors do not show structural similarity to any of previously known growth factor superfamilies; instead they are similar to saposins, the lipid-binding proteins. The N-terminal domain of MANF and CDNF contain conserved lysines and arginines on its surface, which may interact with negatively charged head groups of phospholipids, as saposins do. Thus MANF and CDNF may provide neurotrophic activities by interacting with a lipo-receptor. The structure of MANF shows a CXXC motif forming internal disulphide bridge in the natively unfolded C-terminus. This motif is common to reductases and disulphide isomerases. It is thus tempting to speculate that the CXXC motif of MANF and CDNF may be involved in oxidative protein folding, which may explain its cytoprotective role in the ER.