917 resultados para Systems Theory
Resumo:
In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.
Resumo:
We show how, for large classes of systems with purely second-class constraints, further information can be obtained about the constraint algebra. In particular, a subset consisting of half the full set of constraints is shown to have vanishing mutual brackets. Some other constraint brackets are also shown to be zero. The class of systems for which our results hold includes examples from non-relativistic particle mechanics as well as relativistic field theory. The results are derived at the classical level for Poisson brackets, but in the absence of commutator anomalies the same results will hold for the commutators of the constraint operators in the corresponding quantised theories.
Resumo:
The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.
Resumo:
Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov-Bohm strongly correlated rings where the characteristic phenomenon of charge-spin separation is clearly observed. Additionally quantum interference effects show up in transport through pi-conjugated annulene molecules producing important effects on the conductance for different source-drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.
Resumo:
Scaled Particle Theory (SPT) has been applied to predict the total free energies of micellization of ionic as well as nonionic micellar systems containing an aryl ring. A modification of the previously developed model has been made, proposing a two-zone model of micellar core which corroborates with the structural information available for such systems. The results are in good agreement with experimental data and also confirm the dictating role of cavity forming free energies for such systems
Resumo:
Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.
Resumo:
Dipolar systems, both liquids and solids, constitute a class of naturally abundant systems that are important in all branches of natural science. The study of orientational relaxation provides a powerful method to understand the microscopic properties of these systems and, fortunately, there are many experimental tools to study orientational relaxation in the condensed phases. However, even after many years of intense research, our understanding of orientational relaxation in dipolar systems has remained largely imperfect. A major hurdle towards achieving a comprehensive understanding is the long range and complex nature of dipolar interactions which also made reliable theoretical study extremely difficult. These difficulties have led to the development of continuum model based theories, which although they provide simple, elegant expressions for quantities of interest, are mostly unsatisfactory as they totally neglect the molecularity of inter-molecular interactions. The situation has improved in recent years because of renewed studies, led by computer simulations. In this review, we shall address some of the recent advances, with emphasis on the work done in our laboratory at Bangalore. The reasons for the failure of the continuum model, as revealed by the recent Brownian dynamics simulations of the dipolar lattice, are discussed. The main reason is that the continuum model predicts too fast a decay of the torque-torque correlation function. On the other hand, a perturbative calculation, based on Zwanzig's projection operator technique, provides a fairly satisfactory description of the single particle orientational dynamics for not too strongly polar dipolar systems. A recently developed molecular hydrodynamic theory that properly includes the effects of intermolecular orientational pair correlations provides an even better description of the single-particle orientational dynamics. We also discuss the rank dependence of the dielectric friction. The other topics reviewed here includes dielectric relaxation and solvation dynamics, as they are intimately connected with orientational relaxation. Recent molecular dynamics simulations of the dipolar lattice are also discussed. The main theme of the present review is to understand the effects of intermolecular interactions on orientational relaxation. The presence of strong orientational pair correlation leads to a strong coupling between the single particle and the collective dynamics. This coupling can lead to rich dynamical properties, some of which are detailed here, while a major part remains yet unexplored.
Resumo:
A new design technique for an SVC-based power system damping controller has been proposed. The controller attempts to place all plant poles within a specified region on the s-plane to guarantee the desired closed loop performance. The use of Horowitz's quantitative feedback theory (QFT) permits the design of a 'fixed gain controller' that maintains its performance in spite of large variations in the plant parameters during its normal course of operation. The required controller parameters are arrived at by solving an optimization problem that incorporates the control specifications. The performance of this robust controller has been evaluated on a single machine infinite bus system equipped with a mid point SVC, and the results are shown to be consistent with the expected performance of the stabilizer. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.
Resumo:
We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.
Resumo:
An approach to the constraint counting theory of glasses is applied to many glass systems which include an oxide, chalcohalide, and chalcogenides. In this, shifting of the percolation threshold due to noncovalent bonding interactions in a basically covalent network and other recent extensions of the theory appear natural. This is particularly insightful and reveals that the chemical threshold signifies another structural transition along with the rigidity percolation threshold, thus unifying these two seemingly disparate toplogical concepts. [S0163-1829(99)11441-3].
Resumo:
This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.
Resumo:
An optimal control law for a general nonlinear system can be obtained by solving Hamilton-Jacobi-Bellman equation. However, it is difficult to obtain an analytical solution of this equation even for a moderately complex system. In this paper, we propose a continuoustime single network adaptive critic scheme for nonlinear control affine systems where the optimal cost-to-go function is approximated using a parametric positive semi-definite function. Unlike earlier approaches, a continuous-time weight update law is derived from the HJB equation. The stability of the system is analysed during the evolution of weights using Lyapunov theory. The effectiveness of the scheme is demonstrated through simulation examples.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.