958 resultados para String quartets
Resumo:
Toda lattice hierarchy and the associated matrix formulation of the 2M-boson KP hierarchies provide a framework for the Drinfeld-Sokolov reduction scheme realized through Hamiltonian action within the second KP Poisson bracket. By working with free currents, which Abelianize the second KP Hamiltonian structure, we are able to obtain a unified formalism for the reduced SL(M + 1, M - k) KdV hierarchies interpolating between the ordinary KP and KdV hierarchies. The corresponding Lax operators are given as superdeterminants of graded SL(M + 1, M - k) matrices in the diagonal gauge and we describe their bracket structure and field content. In particular, we provide explicit free field representations of the associated W(M, M - k) Poisson bracket algebras generalising the familiar nonlinear W-M+1 algebra. Discrete Backlund transformations for SL(M + 1, M - k) KdV are generated naturally from lattice translations in the underlying Toda-like hierarchy. As an application we demonstrate the equivalence of the two-matrix string model to the SL(M + 1, 1) KdV hierarchy.
Resumo:
We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.
Resumo:
The conventional S-matrix approach to the (tree level) open string low energy effective lagrangian assumes that, in order to obtain all its bosonic alpha'(N) order terms, it is necessary to know the open string (tree level) (N + 2)-point amplitude of massless bosons, at least expanded at that order in alpha'. In this work we clarify that the previous claim is indeed valid for the bosonic open string, but for the supersymmetric one the situation is much more better than that: there are constraints in the kinematical bosonic terms of the amplitude (probably due to Spacetime Supersymmetry) such that a much lower open superstring n-point amplitude is needed to find all the alpha'(N) order terms. In this 'revisited' S-matrix approach we have checked that, at least up to alpha'(4) order, using these kinematical constraints and only the known open superstring 4-point amplitude, it is possible to determine all the bosonic terms of the low energy effective lagrangian. The sort of results that we obtain seem to agree completely with the ones achieved by the method of BPS configurations, proposed about ten years ago. By means of the KLT relations, our results can be mapped to the NS-NS sector of the low energy effective lagrangian of the type II string theories implying that there one can also find kinematical constraints in the N -point amplitudes and that important informations can be inferred, at least up to alpha'(4) order, by only using the (tree level) 4-point amplitude.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hadronic transitions rates in the heavy quarkonium systems are calculated within the framework of the QCD multipole expansion. The spectrum of glueballs consisting of two massive gluons, obtained by the use of the potential model, is adopted as a suitable description of the intermediate states. Comparisons with the quark confining string model (QCS) and the bag model are made. © 1990 Springer-Verlag.
Resumo:
In this note we show that the induced 2D-gravity SL(2, ℝ) currents can be defined in a gauge-independent way although they manifest themselves as generators of residual symmetries only in some special gauges. In the Coulomb gas representation we investigate two approaches, namely one resembling string field theory and another that emphasizes the SL(2, ℝ) structure in the phase space. In the conformal gauge we propose a solution of the Liouville theory in terms of the SL(2, ℝ) currents.
Resumo:
We review two-dimensional QCD. We start with the field theory aspects since 't Hooft's 1/N expansion, arriving at the non-Abelian bosonization formula, coset construction and gauge-fixing procedure. Then we consider the string interpretation, phase structure and the collective coordinate approach. Adjoint matter is coupled to the theory, and the Landau-Ginzburg generalization is analysed. We end with considerations concerning higher algebras, integrability, constraint structure, and the relation of high-energy scattering of hadrons with two-dimensional (integrable) field theories.
Resumo:
We give a gauge and manifestly SO(2,2) covariant formulation of the field theory of the self-dual string. The string fields are gauge connections that turn the super-Virasoro generators into covariant derivatives, © 1997 Elsevier Science B.V.
Resumo:
Closed string physical states are BRST cohomology classes computed on the space of states annihilated by b- 0. Since b- 0 does not commute with the operations of picture changing, BRST cohomologies at different pictures need not agree. We show explicitly that Ramond-Ramond (RR) zero-momentum physical states are inequivalent at different pictures, and prove that non-zero-momentum physical states are equivalent in all pictures. We find that D-brane states represent BRST classes that are non-polynomial on the superghost zero-modes, while RR gauge fields appear as polynomial BRST classes. We also prove that in x-cohomology, the cohomology where the zero-mode of the spatial coordinates is included, there is a unique ghost-number one BRST class responsible for the Green-Schwarz anomaly, and a unique ghost number minus one BRST class associated with RR charge. © 1998 Elsevier Science B.V.
Resumo:
We reexamine the two-point function approaches used to study vacuum fluctuation in wedge-shaped regions and conical backgrounds. The appearance of divergent integrals is discussed and circumvented. The issue is considered in the context of a massless scalar field in cosmic string spacetime.
Resumo:
The methods of effective field theory are used to explore the theoretical and phenomenological aspects of the torsion field. The spinor action coupled to the electromagnetic field and torsion possesses an additional softly broken gauge symmetry. This symmetry enables one to derive the unique form of the torsion action compatible with unitarity and renormalizability. It turns out that the antisymmetric torsion field is equivalent to a massive axial vector field. The introduction of scalars leads to serious problems which are revealed after the calculation of the leading two-loop divergences. Thus the phenomenological aspects of torsion may be studied only for the fermion-torsion systems. In this part of the paper we obtain upper bounds for the torsion parameters using present experimental data on forward-backward Z-pole asymmetries, data on the experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and also TEVATRON limits on the cross section of a new gauge boson, which could be produced as a resonance at high energy pp collisions. The present experimental data enable one to put limits on the torsion parameters for the various ranges of the torsion mass. We emphasize that for a torsion mass of the order of the Planck mass no independent theory for torsion is possible, and one must directly use string theory. © 1999 Elsevier Science B.V.
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).
Resumo:
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension. © 2000 Elsevier Science B.V.
Resumo:
Dijet production at the Tevatron including effects of virtual exchanges of spin-2 Kaluza-Klein modes in theories with large extra dimensions is considered. The experimental dijet mass and angular distribution are exploited to obtain stringent limits (> 1.2TeV) on the effective string scale M s.
Resumo:
Although the equations of motion for the Neveu-Schwarz (NS) and Ramond (R) sectors of open superstring field theory can be covariantly expressed in terms of one NS and one R string field, picture-changing problems prevent the construction of an action involving these two string fields. However, a consistent action can be constructed by dividing the NS and R states into three string fields which are real, chiral and antichiral. The open superstring field theory action includes a WZW-like term for the real field and holomorphic Chern-Simons-like terms for the chiral and antichiral fields. Different versions of the action can be constructed with either manifest d = 8 Lorentz covariance or manifest TV = 1 d = 4 super-Poincaré covariance. The lack of a manifestly d = 10 Lorentz covariant action is related to the self-dual five-form in the type-IIB R-R sector.