4 resultados para String quartets
em CaltechTHESIS
Resumo:
There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes $\langle a_{lm}a_{l'm'}^*\rangle$ of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.
Resumo:
A theory of two-point boundary value problems analogous to the theory of initial value problems for stochastic ordinary differential equations whose solutions form Markov processes is developed. The theory of initial value problems consists of three main parts: the proof that the solution process is markovian and diffusive; the construction of the Kolmogorov or Fokker-Planck equation of the process; and the proof that the transistion probability density of the process is a unique solution of the Fokker-Planck equation.
It is assumed here that the stochastic differential equation under consideration has, as an initial value problem, a diffusive markovian solution process. When a given boundary value problem for this stochastic equation almost surely has unique solutions, we show that the solution process of the boundary value problem is also a diffusive Markov process. Since a boundary value problem, unlike an initial value problem, has no preferred direction for the parameter set, we find that there are two Fokker-Planck equations, one for each direction. It is shown that the density of the solution process of the boundary value problem is the unique simultaneous solution of this pair of Fokker-Planck equations.
This theory is then applied to the problem of a vibrating string with stochastic density.
Resumo:
Since the discovery of D-branes as non-perturbative, dynamic objects in string theory, various configurations of branes in type IIA/B string theory and M-theory have been considered to study their low-energy dynamics described by supersymmetric quantum field theories.
One example of such a construction is based on the description of Seiberg-Witten curves of four-dimensional N = 2 supersymmetric gauge theories as branes in type IIA string theory and M-theory. This enables us to study the gauge theories in strongly-coupled regimes. Spectral networks are another tool for utilizing branes to study non-perturbative regimes of two- and four-dimensional supersymmetric theories. Using spectral networks of a Seiberg-Witten theory we can find its BPS spectrum, which is protected from quantum corrections by supersymmetry, and also the BPS spectrum of a related two-dimensional N = (2,2) theory whose (twisted) superpotential is determined by the Seiberg-Witten curve. When we don’t know the perturbative description of such a theory, its spectrum obtained via spectral networks is a useful piece of information. In this thesis we illustrate these ideas with examples of the use of Seiberg-Witten curves and spectral networks to understand various two- and four-dimensional supersymmetric theories.
First, we examine how the geometry of a Seiberg-Witten curve serves as a useful tool for identifying various limits of the parameters of the Seiberg-Witten theory, including Argyres-Seiberg duality and Argyres-Douglas fixed points. Next, we consider the low-energy limit of a two-dimensional N = (2, 2) supersymmetric theory from an M-theory brane configuration whose (twisted) superpotential is determined by the geometry of the branes. We show that, when the two-dimensional theory flows to its infra-red fixed point, particular cases realize Kazama-Suzuki coset models. We also study the BPS spectrum of an Argyres-Douglas type superconformal field theory on the Coulomb branch by using its spectral networks. We provide strong evidence of the equivalence of superconformal field theories from different string-theoretic constructions by comparing their BPS spectra.
Resumo:
In this thesis, we consider two main subjects: refined, composite invariants and exceptional knot homologies of torus knots. The main technical tools are double affine Hecke algebras ("DAHA") and various insights from topological string theory.
In particular, we define and study the composite DAHA-superpolynomials of torus knots, which depend on pairs of Young diagrams and generalize the composite HOMFLY-PT polynomials from the full HOMFLY-PT skein of the annulus. We also describe a rich structure of differentials that act on homological knot invariants for exceptional groups. These follow from the physics of BPS states and the adjacencies/spectra of singularities associated with Landau-Ginzburg potentials. At the end, we construct two DAHA-hyperpolynomials which are closely related to the Deligne-Gross exceptional series of root systems.
In addition to these main themes, we also provide new results connecting DAHA-Jones polynomials to quantum torus knot invariants for Cartan types A and D, as well as the first appearance of quantum E6 knot invariants in the literature.