968 resultados para Stone Tool Function
Resumo:
The output of a differential scanning fluorimetry (DSF) assay is a series of melt curves, which need to be interpreted to get value from the assay. An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called “Meltdown,” conducts four main activities—control checks, curve normalization, outlier rejection, and melt temperature (Tm) estimation—and performs optimally in the presence of triplicate (or higher) sample data. The final output is a report that summarizes the results of a DSF experiment. The goal of Meltdown is not to replace human analysis of the raw fluorescence data but to provide a meaningful and comprehensive interpretation of the data to make this useful experimental technique accessible to inexperienced users, as well as providing a starting point for detailed analyses by more experienced users.
Resumo:
Wrong-Doing, Truth-Telling: The Function of Avowal in Justice is a collection of seven lectures delivered by French philosopher and historian Michel Foucault at the Catholic University of Louvain in 1981. Compiled from audiovisual recordings and Foucault’s original manuscripts, these lectures explore the notion of avowal and its place within criminal justice processes. Accompanied by three contemporaneous interviews given by Foucault (only one of which has previously been available in English), and a preface and concluding essay by the editors contextualizing these lectures in Foucault’s oeuvre, this volume contributes much to Foucaultian scholarship, particularly when considered alongside the recently published volumes of Foucault’s lecture courses at the Collège de France. However, while the book promises to offer some insights of relevance to criminology, it is important to remember that this is not its key purpose, and criminologists should read it with this caveat in mind...
Resumo:
Several clinical studies suggest the involvement of premature ageing processes in chronic obstructive pulmonary disease (COPD). Using an epidemiological approach, we studied whether accelerated ageing indicated by telomere length, a marker of biological age, is associated with COPD and asthma, and whether intrinsic age-related processes contribute to the interindividual variability of lung function. Our meta-analysis of 14 studies included 934 COPD cases with 15 846 controls defined according to the Global Lungs Initiative (GLI) criteria (or 1189 COPD cases according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria), 2834 asthma cases with 28 195 controls, and spirometric parameters (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC) of 12 595 individuals. Associations with telomere length were tested by linear regression, adjusting for age, sex and smoking status. We observed negative associations between telomere length and asthma (β= −0.0452, p=0.024) as well as COPD (β= −0.0982, p=0.001), with associations being stronger and more significant when using GLI criteria than those of GOLD. In both diseases, effects were stronger in females than males. The investigation of spirometric indices showed positive associations between telomere length and FEV1 (p=1.07×10−7), FVC (p=2.07×10−5), and FEV1/FVC (p=5.27×10−3). The effect was somewhat weaker in apparently healthy subjects than in COPD or asthma patients. Our results provide indirect evidence for the hypothesis that cellular senescence may contribute to the pathogenesis of COPD and asthma, and that lung function may reflect biological ageing primarily due to intrinsic processes, which are likely to be aggravated in lung diseases.
Resumo:
Clinical studies have demonstrated an impairment of glucocorticoid receptor (GR)-mediated negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis in patients with major depression (GR resistance), and its resolution by antidepressant treatment. Recently, we showed that this impairment is indeed due to a dysfunction of GR in depressed patients (Carvalho et al., 2009), and that the ability of the antidepressant clomipramine to decrease GR function in peripheral blood cells is impaired in patients with major depression who are clinically resistant to treatment (Carvalho et al. 2008). To further investigate the effect of antidepressants on GR function in humans, we have compared the effect of the antidepressants clomipramine, amytriptiline, sertraline, paroxetine and venlafaxine, and of the antipsychotics, haloperidol and risperidone, on GR function in peripheral blood cells from healthy volunteers (n=33). GR function was measured by glucocorticoid inhibition of lypopolysaccharide (LPS)-stimulated interleukin-6 (IL-6) levels. Compared to vehicle-treated cells, all antidepressants inhibited dexamethasone (DEX, 10-100nM) inhibition of LPS-stimulated IL-6 levels (p values ranging from 0.007 to 0.1). This effect was specific to antidepressants, as antipsychotics had no effect on DEX-inhibition of LPS-stimulated IL-6 levels. The phosphodiesterase (PDE) type 4 inhibitor, rolipram, potentiated the effect of antidepressants on GR function, while the GR antagonist, RU-486, inhibited the effect of antidepressants on GR function. These findings indicate that the effect of antidepressants on GR function are specific for this class of psychotropic drugs, and involve second messenger pathways relevant to GR function and inflammation. Furthermore, it also points towards a possible mechanism by which one maybe able to overcome treatment-resistant depression. Research in this field will lead to new insights into the pathophysiology and treatment of affective disorders.
Resumo:
Objective This review aims to summarize the importance of animal models for research on psychiatric illnesses, particularly schizophrenia. Method and Results Several aspects of animal models are addressed, including animal experimentation ethics and theoretical considerations of different aspects of validity of animal models. A more specific discussion is included on two of the most widely used behavioural models, psychotropic drug-induced locomotor hyperactivity and prepulse inhibition, followed by comments on the difficulty of modelling negative symptoms of schizophrenia. Furthermore, we emphasize the impact of new developments in molecular biology and the generation of genetically modified mice, which have generated the concept of behavioural phenotyping. Conclusions Complex psychiatric illnesses, such as schizophrenia, cannot be exactly reproduced in species such as rats and mice. Nevertheless, by providing new information on the role of neurotransmitter systems and genes in behavioural function, animal 'models' can be an important tool in unravelling mechanisms involved in the symptoms and development of such illnesses, alongside approaches such as post-mortem studies, cognitive and psychophysiological studies, imaging and epidemiology.
Resumo:
Background The use of mobile apps for health and well being promotion has grown exponentially in recent years. Yet, there is currently no app-quality assessment tool beyond “star”-ratings. Objective The objective of this study was to develop a reliable, multidimensional measure for trialling, classifying, and rating the quality of mobile health apps. Methods A literature search was conducted to identify articles containing explicit Web or app quality rating criteria published between January 2000 and January 2013. Existing criteria for the assessment of app quality were categorized by an expert panel to develop the new Mobile App Rating Scale (MARS) subscales, items, descriptors, and anchors. There were sixty well being apps that were randomly selected using an iTunes search for MARS rating. There were ten that were used to pilot the rating procedure, and the remaining 50 provided data on interrater reliability. Results There were 372 explicit criteria for assessing Web or app quality that were extracted from 25 published papers, conference proceedings, and Internet resources. There were five broad categories of criteria that were identified including four objective quality scales: engagement, functionality, aesthetics, and information quality; and one subjective quality scale; which were refined into the 23-item MARS. The MARS demonstrated excellent internal consistency (alpha = .90) and interrater reliability intraclass correlation coefficient (ICC = .79). Conclusions The MARS is a simple, objective, and reliable tool for classifying and assessing the quality of mobile health apps. It can also be used to provide a checklist for the design and development of new high quality health apps.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
Tumour suppressors safeguard the fidelity of the mitotic checkpoint by transcriptional regulation of genes that encode components of the mitotic checkpoint complex (MCC). Here we report a new role for the tumour suppressor and transcription factor, WT1, in the mitotic checkpoint. We show that WT1 regulates the MCC by directly interacting with the spindle assembly checkpoint protein, MAD2. WT1 colocalizes with MAD2 during mitosis and preferentially binds to the functionally active, closed-conformer, C-MAD2. Furthermore, WT1 associates with the MCC containing MAD2, BUBR1 and CDC20, resulting in prolonged inhibition of the anaphase-promoting complex/cyclosome (APC/C) and delayed degradation of its substrates SECURIN and CYCLIN B1. Strikingly, RNA interference-mediated depletion of WT1 leads to enhanced turnover of SECURIN, decreased lag time to anaphase and defects in chromosome segregation. Our findings identify WT1 as a regulator of the mitotic checkpoint and chromosomal stability.
Bayesian networks as a complex system tool in the context of a major industry and university project
Resumo:
IT consumerization is both a major opportunity and significant challenge for organizations. However, IS research has hardly discussed the implications for IT management so far. In this paper we address this topic by empirically identifying organizational themes for IT consumerization and conceptually exploring the direct and indirect effects on the business value of IT, IT capabilities, and the IT function. More specifically, based on two case studies, we identify eight organizational themes: consumer IT strategy, policy development and responsibilities, consideration of private life of employees, user involvement into IT-related processes, individualization, updated IT infrastructure, end user support, and data and system security. The contributions of this paper are: (1) the identification of organizational themes for IT consumerization; (2) the proposed effects on the business value of IT, IT capabilities and the IT function, and; (3) combining empirical insights into IT consumerization with managerial theories in the IS discipline.
Resumo:
This project was a step forward in discovering the potential role of intestinal cell kinase in prostate cancer development. Intestinal cell kinase was shown to be upregulated in prostate cancer cells and altered expression led to changes in key cell survival proteins. This study used in vitro experiments to monitor changes in cell growth, protein and RNA expression.
Resumo:
Background The evaluation of the hand function is an essential element within the clinical practice. The usual assessments are focus on the ability to perform activities of daily life. The inclusion of instruments to measure kinematic variables provides a new approach to the assessment. Inertial sensors adapted to the hand could be used as a complementary instrument to the traditional assessment. Material: clinimetric assessment (Upper Limb Functional Index, Quick Dash), antrophometric variables (eight and weight), dynamometry (palm preasure) was taken. Functional analysis was made with Acceleglove system for the right hand and computer system. The glove has six acceleration sensor, one on each finger and another one on the reverse palm. Method Analytic, transversal approach. Ten healthy subject made six task on evaluation table (tripod pinch, lateral pinch and tip pinch, extension grip, spherical grip and power grip). Each task was made and measure three times, the second one was analyze for the results section. A Matlab script was created for the analysis of each movement and detection phase based on module vector. Results The module acceleration vector offers useful information of the hand function. The data analysis obtained during the performance of functional gestures allows to identify five different phases within the movement, three static phase and tow dynamic, each module vector was allied to one task. Conclusion Module vector variables could be used for the analysis of the different task made by the hand. Inertial sensor could be use as a complement for the traditional assessment system.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. With High-angular resolution diffusion imaging (HARDI) and the tensor distribution function (TDF), one can reconstruct multiple underlying fibers per voxel and their individual anisotropy measures by representing the diffusion profile as a probabilistic mixture of tensors. We found that FA, when compared with TDF-derived anisotropy measures, correlates poorly with individual fiber anisotropy, and may sub-optimally detect disease processes that affect myelination. By contrast, mean diffusivity (MD) as defined in standard DTI appears to be more accurate. Overall, we argue that novel measures derived from the TDF approach may yield more sensitive and accurate information than DTI-derived measures.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.