870 resultados para Stem Cell Research


Relevância:

90.00% 90.00%

Publicador:

Resumo:

El trasplante de órganos y/o tejidos es considerado como una opción terapéutica viable para el tratamiento tanto de enfermedades crónicas o en estadios terminales, como de afectaciones no vitales, pero que generen una disminución en la calidad de vida percibida por el paciente. Este procedimiento, de carácter multidimensional, está compuesto por 3 actores principales: el donante, el órgano/tejido, y el receptor. Si bien un porcentaje significativo de investigaciones y planes de intervención han girado en torno a la dimensión biológica del trasplante, y a la promoción de la donación; el interés por la experiencia psicosocial y la calidad de vida de los receptores en este proceso ha aumentado durante la última década. En relación con esto, la presente monografía se plantea como objetivo general la exploración de la experiencia y los significados construidos por los pacientes trasplantados, a través de una revisión sistemática de la literatura sobre esta temática. Para ello, se plantearon unos objetivos específicos derivados del general, se seleccionaron términos o palabras claves por cada uno de estos, y se realizó una búsqueda en 5 bases de datos para revistas indexadas: Ebsco Host (Academic Search; y Psychology and Behavioral Sciences Collection); Proquest; Pubmed; y Science Direct. A partir de los resultados, se establece que si bien la vivencia de los receptores ha comenzado a ser investigada, aún es necesaria una mayor exploración sobre la experiencia de estos pacientes; exploración que carecería de objetivo si no se hiciera a través de las narrativas o testimonios de los mismos receptores

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los síndromes mielodisplásicos son un grupo heterogéneo de desórdenes clonales de las células madre hematopoyéticas caracterizadas por displasia y producción inefectiva de células sanguíneas. Los agentes estimulantes de la eritropoyesis (AEE) constituyen una alternativa terapéutica para un grupo de pacientes con síndromes mielodisplásicos. Se realizó una revisión sistemática de la literatura de estudios aleatorizados controlados, que evaluaron la eficacia y seguridad de los AEE en adultos con diagnóstico de síndrome mielodisplásico hasta febrero de 2014. A partir de la búsqueda se encontraron 1071 referencias, se obtuvieron 12 referencias, correspondiente a 9 estudios que cumplieron criterios de selección. Todos evaluaron algún AEE pero el grupo comparador difirió entre ellos; De los estudios seleccionados, ninguno evaluó el desenlace de supervivencia según brazos de tratamiento. 3 de los estudios evaluaron el desenlace de calidad de vida en grupos comparativos diferentes, reportando mejorías no estadísticamente significativas. 7 de los estudios evaluaron la respuesta hematológica reportando resultados divergentes según diversas definiciones de la variable de interés. Los desenlaces de seguridad fueron reportaron en 3 de los estudios, ocurriendo en baja proporción y con incidencia similar entre los grupos comparadores y el tratamiento con AEE. Las evaluaciones de riesgo de sesgo consideraron un estudio con bajo riesgo de sesgo, 4 estudios con riesgo incierto y 4 estudios con riesgo alto de sesgo. Los estudios evaluados fueron considerados en su mayoría con riesgo de sesgo incierto o alto. Se sugiere evaluar dichos desenlaces de interés de manera estandarizada en investigaciones futuras en el tema.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los solventes orgánicos son sustancias químicas que por sus propiedades físico-químicas son fácilmente inhalados o absorbidos por la piel, pueden causar daños de diversa índole en la salud. En Colombia existen normas que contemplan las medidas de protección, sin embargo persiste la informalidad en el sector de pintores de autos, por lo cual los trabajadores expuestos, a largo plazo pueden ver afectada su salud. En este estudio se analizó la relación entre individuos expuestos laboralmente a los solventes orgánicos versus no expuestos con respecto a la longitud de sus telómeros y formación de fragilidades. Se emplearon muestras de sangre extraídas por venopunción, recolectada en dos tubos: uno con Heparina, destinado al cultivo de linfocitos, para obtener cromosomas metafásicos y evaluar en ellos la presencia de fragilidades; el otro tubo con EDTA, fue empleado para la extracción de ADN y se utilizó para obtener los valores de longitud telomérica mediante la técnica de PCR cuantitativa. Los análisis estadísticos se realizaron aplicando la prueba de rangos de Wilcoxon, en el caso de la presencia de fragilidades se analizó la razón No.Fragilidades/No.Metafases, aplicando el método de Wilcoxon se encontró que existe diferencia estadísticamente significativa entre expuestos y no expuestos (p = 0,036), en donde los expuestos presentan mayor frecuencia de fragilidades. Por otra parte el valor relativo de longitud telomérica del grupo de expuestos fue mayor que el observado en el grupo de no expuestos, esta diferencia fue estadísticamente significativa (Wilcoxon, p = 0.002).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated differences in bovine limbal epithelial cell differentiation when expanded upon intact (amniotic epithelial cells and basement membrane remaining) and denuded human amniotic membrane, a commonly used substrate in ophthalmic surgery for corneal stem cell transplantation. Ex vivo expansion of the epithelial cells, in supplemented media, continued for 2 weeks followed by 1 week under ‘air-lifting’ conditions. Before and after air-lifting the differentiated (K3/K12 positive) and undifferentiated (K14 positive) cells were quantified by immunohistochemistry, Western blotting and quantitative PCR. Limbal epithelial cells expanded upon amniotic membrane formed 4-6 stratified layers, both on intact and denuded amniotic membrane. On denuded amniotic membrane the proportion of differentiated cells remained unaltered following airlifting. Within cells grown on intact amniotic membrane, however, the number of differentiated cells increased significantly following air-lifting. These results have important implications for both basic and clinical research. Firstly, they show that bovine limbal epithelia can be used as an alternative source of cells for basic research investigating ex vivo limbal stem cells expansion. Secondly, these findings serve as a warning to clinicians that the affect of amniotic membrane on transplantable cells is not fully understood; the use of intact or denuded amniotic membrane can produce different results in terms of the amount of differentiation, once cells are exposed to the air.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO center dot) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since its discovery more than a decade ago [Wu et al., 1982; Rozengurt et al., 1983], the 80-87 kDa myristoylated a lanine-rich C-kinase substrate (80K/MARCKS) protein has attracted a great deal of attention from researchers interested in cell growth and tumour progression. However, despite its ubiquitous distribution, a definitive functional role for 80K/MARCKS has not been found. The purpose of this review is to describe the properties, distribution and regulation of 80K/MARCKS and to discuss some of the most recent findings, both from our laboratory and from others, that have suggested a functional role for this protein in modulating cell growth and tumour progression. Furthermore, I will present data from our laboratory that implicates 80K/MARCKS as a novel tumour suppressor in cells of melanocyte origin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Satellite cells represent the stem cell population of adult skeletal muscle. The molecular mechanisms that control the proliferation of satellite cells are not well understood. In this study, we show that in response to injury, myofibres activate Wnt ligand transcription and activate a reporter cell line that is sensitive to the canonical Wnt-signalling pathway. Activated satellite cells on isolated cultured myofibres show robust expression of activated-β-catenin (Act-β-Cat), a key downstream transcriptional coactivator of canonical Wnt signalling. We provide evidence that the Wnt family of secreted glycoproteins act on satellite cells in a ligand-specific manner. Overexpression of Wnt1, Wnt3a or Wnt5a protein causes a dramatic increase in satellite-cell proliferation. By contrast, exposure of satellite cells to Wnt4 or Wnt6 diminishes this process. Moreover, we show that the prolonged satellite-cell quiescence induced by inhibitory Wnt is reversible and exposing inhibited satellite cells to stimulatory Wnt signalling restores their proliferation rate. Stimulatory Wnt proteins induce premature satellite cell BrdU incorporation as well as nuclear translocation of Act-β-Cat. Finally, we provide evidence that the Act-β-Cat translocation observed in single fibres during in vitro culture also occurs in cases of acute and chronic skeletal muscle regeneration in rodents and humans. We propose that Wnt proteins may be key factors that regulate the rate of satellite-cell proliferation on adult muscle fibres during the wound-healing response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons. Stem Cells 2013;31:1868-1880.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The approach of reaggregation involves the regeneration and self-renewal of histotypical 3D spheres from isolated tissue kept in suspension culture. Reaggregated spheres can be used as tumour, genetic, biohybrid and neurosphere models. In addition the functional superiority of 3D aggregates over conventional 2D cultures developed the use of neurospheres for brain engineering of CNS diseases. Thus 3D aggregate cultures created enormous interest in mechanisms that regulate the formation of multicellular aggregates in vitro. Here we analyzed mechanisms guiding the development of 3D neurosphere cultures. Adult neural stem cells can be cultured as self-adherent clusters, called neurospheres. Neurospheres are characterised as heterogeneous clusters containing unequal stem cell sub-types. Tumour necrosis factor-alpha (TNF-alpha is one of the crucial inflammatory cytokines with multiple actions on several cell types. TNF-alpha strongly activates the canonical Nuclear Factor Kappa-B (NF- kappaB) pathway. In order to investigate further functions of TNF in neural stem cells (NSCs) we tested the hypothesis that TNF is able to modulate the motility and/or migratory behaviour of SVZ derived adult neural stem cells. We observed a significantly faster sphere formation in TNF treated cultures than in untreated controls. The very fast aggregation of isolated NSCs (<2h) is a commonly observed phenomenon, though the mechanisms of 3D neurosphere formation remain largely unclear. Here we demonstrate for the first time, increased aggregation and enhanced motility of isolated NSCs in response to the TNF-stimulus. Moreover, this phenomenon is largely dependent on activated transcription factor NF-kappaB. Both, the pharmacological blockade of NF-kappaB pathway by pyrrolidine dithiocarbamate (PDTC) or Bay11-7082 and genetic blockade by expression of a transdominant-negative super-repressor IkappaB-AA1 led to decreased aggregation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-alpha) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-alpha/beta-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-kappaB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-kappaB super-repressor IkappaB-AA1. Pharmacological blockade of IkappaB ubiquitin ligase activity led to comparable decreases in NF-kappaB activity and proliferation. In addition, IKK-beta gene product knock-down via siRNA led to diminished NF-kappaB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFbeta-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-beta resulted in activation of NF-kappaB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-kappaB pathway resulted in strongly increased proliferation of NSCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adult human neural crest-derived stem cells (NCSCs) are of extraordinary high plasticity and promising candidates for the use in regenerative medicine. Here we describe for the first time a novel neural crest-derived stem cell population within the respiratory epithelium of human adult inferior turbinate. In contrast to superior and middle turbinates, high amounts of source material could be isolated from human inferior turbinates. Using minimally-invasive surgery methods isolation is efficient even in older patients. Within their endogenous niche, inferior turbinate stem cells (ITSCs) expressed high levels of nestin, p75(NTR), and S100. Immunoelectron microscopy using anti-p75 antibodies displayed that ITSCs are of glial origin and closely related to nonmyelinating Schwann cells. Cultivated ITSCs were positive for nestin and S100 and the neural crest markers Slug and SOX10. Whole genome microarray analysis showed pronounced differences to human ES cells in respect to pluripotency markers OCT4, SOX2, LIN28, and NANOG, whereas expression of WDR5, KLF4, and c-MYC was nearly similar. ITSCs were able to differentiate into cells with neuro-ectodermal and mesodermal phenotype. Additionally ITSCs are able to survive and perform neural crest typical chain migration in vivo when transplanted into chicken embryos. However ITSCs do not form teratomas in severe combined immunodeficient mice. Finally, we developed a separation strategy based on magnetic cell sorting of p75(NTR) positive ITSCs that formed larger neurospheres and proliferated faster than p75(NTR) negative ITSCs. Taken together our study describes a novel, readily accessible source of multipotent human NCSCs for potential cell-replacement therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the process of development, neural crest cells migrate out from their niche between the newly formed ectoderm and the neural tube. Thereafter, they give rise not only to ectodermal cell types, but also to mesodermal cell types. Cell types with neural crest ancestry consequently comprise a number of specialized varieties, such as ectodermal neurons, melanocytes and Schwann cells, as well as mesodermal osteoblasts, adipocytes and smooth muscle cells. Numerous recent studies suggest that stem cells with a neural crest origin persist into adulthood, especially within the mammalian craniofacial compartment. This review discusses the sources of adult neural crest-derived stem cells (NCSCs) derived from the cranium, as well as their differentiation potential and expression of key stem cell markers. Furthermore, the expression of marker genes associated with embryonic stem cells and the issue of multi- versus pluripotency of adult NCSCs is reviewed. Stringent tests are proposed, which, if performed, are anticipated to clarify the issue of adult NCSC potency. Finally, current pre-clinical and clinical data are discussed in light of the clinical impact of adult NCSCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.