924 resultados para Spherical parameterization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured human contrast sensitivity to radial frequencies modulated by cylindrical (Jo) and spherical (j o) Bessel profiles. We also measured responses to profiles of j o, j1, j2, j4, j8, and j16. Functions were measured three times by at least three of eight observers using a forced-choice method. The results conform to our expectations that sensitivity would be higher for cylindrical profiles. We also observed that contrast sensitivity is increased with the j n order for n greater than zero, having distinct orderly effects at the low and high frequency ends. For n = 0, 1, 2, and 4 sensitivity tended to occur around 0.8-1.0 cpd while for n = 8 and 16 it seemed to shift gradually to 0.8-3.0 cpd. We interpret these results as being consistent with the possibility that spatial frequency processing by the human visual system can be defined a priori in terms of polar coordinates and discuss its application to study face perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most common form of dementia. Characteristic changes in an AD brain are the formation of β-amyloid protein (Aβ) plaques and neurofibrillary tangles, though other alterations in the brain have also been connected to AD. No cure is available for AD and it is one of the leading causes of death among the elderly in developed countries. Liposomes are biocompatible and biodegradable spherical phospholipid bilayer vesicles that can enclose various compounds. Several functional groups can be attached on the surface of liposomes in order to achieve long-circulating target-specific liposomes. Liposomes can be utilized as drug carriers and vehicles for imaging agents. Positron emission tomography (PET) is a non-invasive imaging method to study biological processes in living organisms. In this study using nucleophilic 18F-labeling synthesis, various synthesis approaches and leaving groups for novel PET imaging tracers have been developed to target AD pathology in the brain. The tracers were the thioflavin derivative [18F]flutemetamol, curcumin derivative [18F]treg-curcumin, and functionalized [18F]nanoliposomes, which all target Aβ in the AD brain. These tracers were evaluated using transgenic AD mouse models. In addition, 18F-labeling synthesis was developed for a tracer targeting the S1P3 receptor. The chosen 18F-fluorination strategy had an effect on the radiochemical yield and specific activity of the tracers. [18F]Treg-curcumin and functionalized [18F]nanoliposomes had low uptake in AD mouse brain, whereas [18F]flutemetamol exhibited the appropriate properties for preclinical Aβ-imaging. All of these tracers can be utilized in studies of the pathology and treatment of AD and related diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions). Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd), as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial) frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency). Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition) for sine-wave gratings and decreased thresholds (i.e., summation) for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings) and the other at high luminance and contrast levels (radial frequency stimuli). We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions in the European Union promotes the combustion of biomass rather than fossil fuels in energy production. Circulating fluidized bed (CFB) combustion offers a simple, flexible and efficient way to utilize untreated biomass in a large scale. CFB furnaces are modeled in order to understand their operation better and to help in the design of new furnaces. Therefore, physically accurate models are needed to describe the heavily coupled multiphase flow, reactions and heat transfer inside the furnace. This thesis presents a new model for the fuel flow inside the CFB furnace, which acknowledges the physical properties of the fuel and the multiphase flow phenomena inside the furnace. This model is applied with special interest in the firing of untreated biomass. An experimental method is utilized to characterize gas-fuel drag force relations. This characteristic drag force approach is developed into a gas-fuel drag force model suitable for irregular, non-spherical biomass particles and applied together with the new fuel flow model in the modeling of a large-scale CFB furnace. The model results are physically valid and achieve very good correspondence with the measurement results from large-scale CFB furnace firing biomass. With the methods and models presented in this work, the fuel flow field inside a circulating fluidized bed furnace can be modeled with better accuracy and more efficiently than in previous studies with a three-dimensional holistic model frame.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circadian timing is structured in such a way as to receive information from the external and internal environments, and its function is the timing organization of the physiological and behavioral processes in a circadian pattern. In mammals, the circadian timing system consists of a group of structures, which includes the suprachiasmatic nucleus (SCN), the intergeniculate leaflet and the pineal gland. Neuron groups working as a biological pacemaker are found in the SCN, forming a biological master clock. We present here a simple model for the circadian timing system of mammals, which is able to reproduce two fundamental characteristics of biological rhythms: the endogenous generation of pulses and synchronization with the light-dark cycle. In this model, the biological pacemaker of the SCN was modeled as a set of 1000 homogeneously distributed coupled oscillators with long-range coupling forming a spherical lattice. The characteristics of the oscillator set were defined taking into account the Kuramoto's oscillator dynamics, but we used a new method for estimating the equilibrium order parameter. Simultaneous activities of the excitatory and inhibitory synapses on the elements of the circadian timing circuit at each instant were modeled by specific equations for synaptic events. All simulation programs were written in Fortran 77, compiled and run on PC DOS computers. Our model exhibited responses in agreement with physiological patterns. The values of output frequency of the oscillator system (maximal value of 3.9 Hz) were of the order of magnitude of the firing frequencies recorded in suprachiasmatic neurons of rodents in vivo and in vitro (from 1.8 to 5.4 Hz).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osmotic dehydration of cherry tomato as influenced by osmotic agent (sodium chloride and a mixed sodium chloride and sucrose solutions) and solution concentration (10 and 25% w/w) at room temperature (25°C) was studied. Kinetics of water loss and solids uptake were determined by a two parameter model, based on Fick's second law and applied to spherical geometry. The water apparent diffusivity coefficients obtained ranged from 2.17x10-10 to 11.69x10-10 m²/s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to produce and characterize lipid particles (MpLs) that may be used as carriers of high amounts of hydrophilic core and evaluate the influence of the core amount on the performance of lipid microparticles. The MpLs were produced by spray cooling from solid and liquid lipid mixtures (stearic and oleic fatty acids and partly hydrogenated vegetable fat) containing glucose solution as core and soy lecithin as surfactant. The performance of MpLs was evaluated by means of the effective amount of encapsulated core, the core amount present on the surface of MpLs (superficial glucose) and the core release profile in aqueous solution. Morphological observations showed that MpLs presented spherical shape and a rugged and continuous surface, and an average diameter between 25 and 32 µm. The effective amount of encapsulated core was greater than 78% for all formulations evaluated. Larger amounts of superficial glucose were found in formulations in which more concentrated glucose solutions were used, regardless of the glucose lipid-solution ratio. The release results showed that core retention was significantly influenced by the glucose solution concentration, whereas release modulation was influenced by the glucose lipid-solution ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration) points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses the coolability of porous debris beds in the context of severe accident management of nuclear power reactors. In a hypothetical severe accident at a Nordic-type boiling water reactor, the lower drywell of the containment is flooded, for the purpose of cooling the core melt discharged from the reactor pressure vessel in a water pool. The melt is fragmented and solidified in the pool, ultimately forming a porous debris bed that generates decay heat. The properties of the bed determine the limiting value for the heat flux that can be removed from the debris to the surrounding water without the risk of re-melting. The coolability of porous debris beds has been investigated experimentally by measuring the dryout power in electrically heated test beds that have different geometries. The geometries represent the debris bed shapes that may form in an accident scenario. The focus is especially on heap-like, realistic geometries which facilitate the multi-dimensional infiltration (flooding) of coolant into the bed. Spherical and irregular particles have been used to simulate the debris. The experiments have been modeled using 2D and 3D simulation codes applicable to fluid flow and heat transfer in porous media. Based on the experimental and simulation results, an interpretation of the dryout behavior in complex debris bed geometries is presented, and the validity of the codes and models for dryout predictions is evaluated. According to the experimental and simulation results, the coolability of the debris bed depends on both the flooding mode and the height of the bed. In the experiments, it was found that multi-dimensional flooding increases the dryout heat flux and coolability in a heap-shaped debris bed by 47–58% compared to the dryout heat flux of a classical, top-flooded bed of the same height. However, heap-like beds are higher than flat, top-flooded beds, which results in the formation of larger steam flux at the top of the bed. This counteracts the effect of the multi-dimensional flooding. Based on the measured dryout heat fluxes, the maximum height of a heap-like bed can only be about 1.5 times the height of a top-flooded, cylindrical bed in order to preserve the direct benefit from the multi-dimensional flooding. In addition, studies were conducted to evaluate the hydrodynamically representative effective particle diameter, which is applied in simulation models to describe debris beds that consist of irregular particles with considerable size variation. The results suggest that the effective diameter is small, closest to the mean diameter based on the number or length of particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä diplomityö tehtiin Valmet Technologies Oy:n Järvenpään toimipisteelle. Työn tavoitteena oli tutkia miten pituusleikkureiden 3D-suunnittelua voidaan tehostaa hyödyntämällä uuden 3D-CAD -järjestelmän ominaisuuksia optimaalisesti. Työ koostuu teoriaosuudesta, haastattelututkimuksesta sekä käytännön osuudesta. Teoriaosuudessa perehdytään pituusleikkurin toimintaan ja rakenteeseen, 3D-suunnittelun teoriaan sekä CATIA-järjestelmään. Teoriaosuudessa etsitään myös uusia näkökulmia 3D-suunnitteluun. Haastattelututkimuksessa kartoitetaan nykyinen suunnitteluprosessi, suunnittelun kehitettäviä kohteita, sekä käytössä olevia suunnittelumenetelmiä, jotka ovat todettu toimiviksi. Haastattelututkimuksessa haastatellaan Valmet Technologies Oy:n Järvenpään toimipisteessä työskenteleviä pituusleikkureiden pääsuunnittelijoita sekä heidän esimiehiään. Lisäksi erillisten haastattelujen avulla kerätään kokemuksia CATIA V6 -ohjelmiston käytöstä sekä suunnitteluohjelmiston vaihtumisesta. Käytännön osuuden tavoitteena on arvioida pituusleikkurin parametroitujen mallirakenteiden siirtämiseen sekä korjauksiin kuluvia aikamääriä kyseisiin toimenpiteisiin tarvittavien resurssien määrittämiseksi. Käytännön osuudessa siirretään kaksi Valmet OptiWin Drum Compact -pituusleikkurin parametroitua osakokonaisuutta uuteen CAD-järjestelmään ja niille suoritetaan tarvittavat korjaustoimenpiteet Tutkimuksen tulosten perusteella yhteisen mallinnusmetodologian puuttuminen on merkittävin kehityskohde suunnittelun kehittämisessä. Lopuksi luotiin kehitysehdotukset sekä implementointisuunnitelma, joiden avulla pituusleikkureiden 3D-suunnittelua voidaan kehittää ja CATIA V6 -ohjelmisto voidaan ottaa käyttöön tehokkaasti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Confocal and two-photon microcopy have become essential tools in biological research and today many investigations are not possible without their help. The valuable advantage that these two techniques offer is the ability of optical sectioning. Optical sectioning makes it possible to obtain 3D visuahzation of the structiu-es, and hence, valuable information of the structural relationships, the geometrical, and the morphological aspects of the specimen. The achievable lateral and axial resolutions by confocal and two-photon microscopy, similar to other optical imaging systems, are both defined by the diffraction theorem. Any aberration and imperfection present during the imaging results in broadening of the calculated theoretical resolution, blurring, geometrical distortions in the acquired images that interfere with the analysis of the structures, and lower the collected fluorescence from the specimen. The aberrations may have different causes and they can be classified by their sources such as specimen-induced aberrations, optics-induced aberrations, illumination aberrations, and misalignment aberrations. This thesis presents an investigation and study of image enhancement. The goal of this thesis was approached in two different directions. Initially, we investigated the sources of the imperfections. We propose methods to eliminate or minimize aberrations introduced during the image acquisition by optimizing the acquisition conditions. The impact on the resolution as a result of using a coverslip the thickness of which is mismatched with the one that the objective lens is designed for was shown and a novel technique was introduced in order to define the proper value on the correction collar of the lens. The amoimt of spherical aberration with regard to t he numerical aperture of the objective lens was investigated and it was shown that, based on the purpose of our imaging tasks, different numerical apertures must be used. The deformed beam cross section of the single-photon excitation source was corrected and the enhancement of the resolution and image quaUty was shown. Furthermore, the dependency of the scattered light on the excitation wavelength was shown empirically. In the second part, we continued the study of the image enhancement process by deconvolution techniques. Although deconvolution algorithms are used widely to improve the quality of the images, how well a deconvolution algorithm responds highly depends on the point spread function (PSF) of the imaging system applied to the algorithm and the level of its accuracy. We investigated approaches that can be done in order to obtain more precise PSF. Novel methods to improve the pattern of the PSF and reduce the noise are proposed. Furthermore, multiple soiu'ces to extract the PSFs of the imaging system are introduced and the empirical deconvolution results by using each of these PSFs are compared together. The results confirm that a greater improvement attained by applying the in situ PSF during the deconvolution process.