988 resultados para Shu jing.
Resumo:
We explored the effect of a novel synthetic triterpenoid compound cyano enone of methyl boswellates (CEMB) on various prostate cancer and glioma cancer cell lines. CEMB displayed concentration-dependent cytotoxic activity with submicromolar lethal dose 50% (LD(50)) values in 10 of 10 tumor cell lines tested. CEMB-induced cytotoxicity is accompanied by activation of downstream effector caspases (caspases 3 and 7) and by upstream initiator caspases involved in both the extrinsic (caspase 8) and intrinsic (caspase 9) apoptotic pathways. By using short interfering RNAs (siRNA), we show evidence that knockdown of caspase 8, DR4, Apaf-1, and Bid impairs CEMB-induced cell death. Similar to other proapoptotic synthetic triterpenoid compounds, CEMB-induced apoptosis involved endoplasmic reticulum stress, as shown by partial rescue of tumor cells by siRNA-mediated knockdown of expression of genes involved in the unfolded protein response such as IRE1 alpha, PERK, and ATF6. Altogether, our results suggest that CEMB stimulates several apoptotic pathways in cancer cells, suggesting that this compound should be evaluated further as a potential agent for cancer therapy. Mol Cancer Ther; 10(9); 1635-43. (C)2011 AACR.
Resumo:
Distributed space time coding for wireless relay networks where the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. In the first phase of the two-phase transmission model, a T -length complex vector is transmitted from the source to all the relays. At each relay, the inphase and quadrature component vectors of the received complex vectors at the two antennas are interleaved before processing them. After processing, in the second phase, a T x 2R matrix codeword is transmitted to the destination. The collection of all such codewords is called Co-ordinate interleaved distributed space-time code (CIDSTC). Compared to the scheme proposed by Jing-Hassibi, for T ges AR, it is shown that while both the schemes give the same asymptotic diversity gain, the CIDSTC scheme gives additional asymptotic coding gain as well and that too at the cost of negligible increase in the processing complexity at the relays.
Resumo:
A construction of a new family of distributed space time codes (DSTCs) having full diversity and low Maximum Likelihood (ML) decoding complexity is provided for the two phase based cooperative diversity protocols of Jing-Hassibi and the recently proposed Generalized Non-orthogonal Amplify and Forward (GNAF) protocol of Rajan et al. The salient feature of the proposed DSTCs is that they satisfy the extra constraints imposed by the protocols and are also four-group ML decodable which leads to significant reduction in ML decoding complexity compared to all existing DSTC constructions. Moreover these codes have uniform distribution of power among the relays as well as in time. Also, simulations results indicate that these codes perform better in comparison with the only known DSTC with the same rate and decoding complexity, namely the Coordinate Interleaved Orthogonal Design (CIOD). Furthermore, they perform very close to DSTCs from field extensions which have same rate but higher decoding complexity.
Resumo:
Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selection procedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.
Resumo:
FreeRTOS is an open-source real-time microkernel that has a wide community of users. We present the formal specification of the behaviour of the task part of FreeRTOS that deals with the creation, management, and scheduling of tasks using priority-based preemption. Our model is written in the Z notation, and we verify its consistency using the Z/Eves theorem prover. This includes a precise statement of the preconditions for all API commands. This task model forms the basis for three dimensions of further work: (a) the modelling of the rest of the behaviour of queues, time, mutex, and interrupts in FreeRTOS; (b) refinement of the models to code to produce a verified implementation; and (c) extension of the behaviour of FreeRTOS to multi-core architectures. We propose all three dimensions as benchmark challenge problems for Hoare's Verified Software Initiative.
Resumo:
We report the investigation of biotin-streptavidin binding interactions using microcantilever sensors. A symmetric cantilever construction is employed to minimize the effects of thermal drift and the control of surface chemistry on the backside of the cantilever is demonstrated to reduce the effects of non-specific binding interactions on the cantilever. Three structurally different biotin modified cantilever surfaces are used as a model system to study the binding interaction with streptavidin. The cantilever response to the binding of streptavidin on these biotin sensing monolayers is compared. The lowest detection limit of streptavidin using biotin-HPDP is found to be between 1 and 10 nM limited by the optical measurement setup. Surface characterization using quartz crystal microbalance (QCM) and high-resolution atomic force microscope (AFM) is used to benchmark the cantilever sensor response. In addition, the QCM and AFM studies reveal that the surface density of bound streptavidin on biotin modified surfaces was low, thereby implying that effects other than steric hindrance are responsible for defining cantilever response. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the present research, microstructures of the surface-nanocrystalline Al alloy material are observed and measured based on the transmission electron microscopy (TEM) technique, and the corresponding mechanical behaviors are investigated experimentally and theoretically. In the experimental research, the nanoindentation test method is used, and the load and microhardness curves are measured, which strongly depend on the grain size and grain size nonuniformity. Two kinds of the nanoindentation test methods are adopted: the randomly selected loading point method and the continuous stiffness method. In the theoretical modeling, based on the microstructure characteristics of the surface-nanocrystalline Al alloy material, a dislocation pile-up model considering the grain size effect and based on the Mott theory is presented and used. The hardness-indent depth curves are predicted and modeled.
Resumo:
An equilibrium equation for the turbulence energy in sediment-laden flows was derived on the basis of solid-liquid two-phase flow theory. The equation was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.
Resumo:
Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.
Resumo:
In this paper, we study the issues of modeling, numerical methods, and simulation with comparison to experimental data for the particle-fluid two-phase flow problem involving a solid-liquid mixed medium. The physical situation being considered is a pulsed liquid fluidized bed. The mathematical model is based on the assumption of one-dimensional flows, incompressible in both particle and fluid phases, equal particle diameters, and the wall friction force on both phases being ignored. The model consists of a set of coupled differential equations describing the conservation of mass and momentum in both phases with coupling and interaction between the two phases. We demonstrate conditions under which the system is either mathematically well posed or ill posed. We consider the general model with additional physical viscosities and/or additional virtual mass forces, both of which stabilize the system. Two numerical methods, one of them is first-order accurate and the other fifth-order accurate, are used to solve the models. A change of variable technique effectively handles the changing domain and boundary conditions. The numerical methods are demonstrated to be stable and convergent through careful numerical experiments. Simulation results for realistic pulsed liquid fluidized bed are provided and compared with experimental data. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
<正> 在Lin & Shu等人采用恒星动力学模型研究星系密度波时,曾作了两个基本假定:(1)假定恒星系统的基态满足小周转圆条件;(2)假定扰动态满足“短波长”“振幅缓变”条件,从而Shu的泊松方程渐近解式可用。