971 resultados para Shear Wall Elements in Cores


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expansins are unusual proteins discovered by virtue of their ability to mediate cell wall extension in plants. We identified cDNA clones for two cucumber expansins on the basis of peptide sequences of proteins purified from cucumber hypocotyls. The expansin cDNAs encode related proteins with signal peptides predicted to direct protein secretion to the cell wall. Northern blot analysis showed moderate transcript abundance in the growing region of the hypocotyl and no detectable transcripts in the nongrowing region. Rice and Arabidopsis expansin cDNAs were identified from collections of anonymous cDNAs (expressed sequence tags). Sequence comparisons indicate at least four distinct expansin cDNAs in rice and at least six in Arabidopsis. Expansins are highly conserved in size and sequence (60-87% amino acid sequence identity and 75-95% similarity between any pairwise comparison), and phylogenetic trees indicate that this multigene family formed before the evolutionary divergence of monocotyledons and dicotyledons. Sequence and motif analyses show no similarities to known functional domains that might account for expansin action on wall extension. A series of highly conserved tryptophans may function in expansin binding to cellulose or other glycans. The high conservation of this multigene family indicates that the mechanism by which expansins promote wall extensin tolerates little variation in protein structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several families of putative transposable elements (TrEs) in both solanaceous plants and Caenorhabditis elegans have been identified by screening the DNA data base for inverted repeated domains present in multiple copies in the genome. The elements are localized within intron and flanking regions of many genes. These elements consist of two inverted repeats flanking sequences ranging from 5 bp to > 500 bp. Identification of multiple elements in which sequence conservation includes both the flanking and internal regions implies that these TrEs are capable of duplicative transposition. Two of the elements were identified in promoter regions of the tomato (Lycoperiscon esculentum) polygalacturonase and potato (Solanum tuberosum) Win1 genes. The element in the polygalacturonase promoter spans a known regulatory region. In both cases, ancestral DNA sequences, which represent potential recombination target sequences prior to insertion of the elements, have been cloned from related species. The sequences of the inverted repeated domains in plants and C. elegans show a high degree of phylogenetic conservation. While frequency of the different elements is variable, some are present in very high copy number. A member of a single C. elegans TrE family is observed approximately once every 20 kb in the genome. The abundance of the described TrEs suggests utility in the genomic analysis of these and related organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma–mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual symptoms are relatively common in Parkinson's disease (PD) and optical coherence tomography has indicated possible retinal thinning. Accumulation of aggregated α-synuclein is thought to be a central pathogenic event in the PD brain but there have not as yet been reports of retinal synucleinopathy. Retinal wholemounts were prepared from subjects with a primary clinicopathological diagnosis of PD (N = 9), dementia with Lewy bodies (DLB; N = 3), Alzheimer's disease (N = 3), progressive supranuclear palsy (N = 2) as well as elderly normal control subjects (N = 4). These were immunohistochemically stained with an antibody against α-synuclein phosphorylated at serine 129, which is a specific molecular marker of synucleinopathy. Phosphorylated α-synuclein-immunoreactive (p-syn IR) nerve fibers were present in 7/9 PD subjects and in 1/3 DLB subjects; these were sparsely distributed and superficially located near or at the inner retinal surface. The fibers were either long and straight or branching, often with multiple en-passant varicosities along their length. The straight fibers most often had an orientation that was radial with respect to the optic disk. Together, these features are suggestive of either retinopetal/centrifugal fibers or of ganglion cell axons. In one PD subject there were sparse p-syn IR neuronal cell bodies with dendritic morphology suggestive of G19 retinal ganglion cells or intrinsically photosensitive ganglion cells. There were no stained nerve fibers or other specific staining in any of the non-PD or non-DLB subjects. It is possible that at least some of the observed visual function impairments in PD subjects might be due to α-synucleinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar nebula processes led to a depletion of volatile elements in different chondrite groups when compared to the bulk chemical composition of the solar system deduced from the Sun's photosphere. For moderately-volatile elements, this depletion primarily correlates with the element condensation temperature and is possibly caused by incomplete condensation from a hot solar nebula, evaporative loss from the precursor dust, and/or inherited from the interstellar medium. Element concentrations and interelement ratios of volatile elements do not provide a clear picture about responsible mechanisms. Here, the abundance and stable isotope composition of the moderately- to highly-volatile element Se are investigated in carbonaceous, ordinary, and enstatite chondrites to constrain the mechanism responsible for the depletion of volatile elements in planetary bodies of the inner solar system and to define a δ(82/78)Se value for the bulk solar system. The δ(82/78)Se of the studied chondrite falls are identical within their measurement uncertainties with a mean of −0.20±0.26‰ (2 s.d., n=14n=14, relative to NIST SRM 3149) despite Se abundance depletions of up to a factor of 2.5 with respect to the CI group. The absence of resolvable Se isotope fractionation rules out a kinetic Rayleigh-type incomplete condensation of Se from the hot solar nebula or partial kinetic evaporative loss on the precursor material and/or the parent bodies. The Se depletion, if acquired during partial condensation or evaporative loss, therefore must have occurred under near equilibrium conditions to prevent measurable isotope fractionation. Alternatively, the depletion and cooling of the nebula could have occurred simultaneously due to the continuous removal of gas and fine particles by the solar wind accompanied by the quantitative condensation of elements from the pre-depleted gas. In this scenario the condensation of elements does not require equilibrium conditions to avoid isotope fractionation. The results further suggest that the processes causing the high variability of Se concentrations and depletions in ordinary and enstatite chondrites did not involve any measurable isotope fractionation. Different degrees of element depletions and isotope fractionations of the moderately-volatile elements Zn, S, and Se in ordinary and enstatite chondrites indicate that their volatility is controlled by the thermal stabilities of their host phases and not by the condensation temperature under canonical nebular conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SIMS analyses have been carried out on clinopyroxenes, plagioclases and amphiboles of six gabbroic samples from Holes 921-924 of the Ocean Drilling Program Leg 153 sited in the MARK area of the Mid-Atlantic Ridge at the ridge-transform intersection, to investigate the rare earth, trace and volatile element distribution in the lower ocean crust during igneous crystallization and higher grade metamorphic conditions. The metagabbros underwent granulite to subgreenschist facies conditions through three main tectono-metamorphic phases: (1) ductile regime (750 < T < 1000 °C and P = 0.3 GPa); (2) transitional regime (600 < T < 700 °C and P = 0.2 GPa); (3) brittle regime (350 < T < 600 °C and P < 0.2 GPa). Igneous clinopyroxenes show Cl-chondrite normalized patterns depleted in LREE, and nearly flat for HREE. The rare earth and trace element distributions in igneous clinopyroxenes and plagioclases indicate that these minerals act as REE reservoirs, and comprise the main contribution to the overall rock content. The abundances in igneous minerals reflect the degree of fractionation of the parent liquids. In metamorphic clinopyroxenes recrystallized in anhydrous assemblages, the REE and trace elements patterns mimic those of the primary ones. Conversely, clinopyroxerie re-equilibrated in amphibolebearing assemblages shows a significant increase in REE, Ti, Zr, Y and V, a negative Eu anomaly, and slight decreases in Sr and Ba. An overall increase of REE and some trace elements is evident in hydrous assemblages, with preferential partitioning in the amphibole. It shows high Ti (18196-22844 ppm), LREE depleted patterns and LaN/SmN = 0.10-0.33, LaN/YbN = 0.10-0.30. Amphiboles from granoblastic assemblages show homogeneous patterns with no or a positive anomaly for TiN and negative anomalies for SrN and ZrN. Volatiles in amphibole are low, with Cl/F < 1; H2O% is significantly lower than the stoichiometric ratio (1.33-1.53%). The composition of the clinopyroxene and amphibole recrystallized in low-strain domains records evidence of incomplete re-equilibration, and element diffusion and partitioning is in part controlled by the textural site. The possible origins of the fluids involved in the metamorphic recrystallization are discussed: (1) remobilization from igneous amphibole; (2) exsolution from evolved melts; (3) introduction of seawater-derived fluids modified in rock-dominated systems; (4) injection of highly evolved hydrous melts during the metamorphic process.