996 resultados para Series (Matemáticas)
Resumo:
La resolución de problemas es uno de los aspectos centrales en las nuevas propuestas curriculares que en la actualidad se realizan sobre la enseñanza de las matemáticas. No obstante, son numerosas las dificultades que aparecen en el aula cuando esta idea quiere llevarse a la práctica, por la falta de conexión con la actividad concreta que los profesores desarrollan. El trabajo que ahora se presenta quiere dar a conocer algunos de los resultados de una investigación más amplia llevada a cabo en la escuela de magisterio de Badajoz uno de cuyos objetivos era describir el conocimiento práctico personal de los profesores de E.G.B. sobre la resolución de problemas.
Resumo:
Las hojas de cálculo son programas comerciales bien conocidos en el ámbito de gestión, pero desgraciadamente, quizá no tanto en el educativo, a pesar de su gran utilidad como medio de exploración para las asignaturas experimentales. Se trata en las siguientes líneas de dar una primera aproximación que pueda despertar el interés de los profesores de distintas materias, y en especial de matemáticas, por este recurso didáctico tan versátil e interesante en las clases.
Resumo:
El plegado, además de tener reconocido valor educativo en el desarrollo de habilidades psicomotoras, constituye un recurso importante para enseñar geometría en todas las etapas educativas. Son tantas las posibilidades de la papiroflexia, que no resulta demasiado difícil encontrar las actividades, para el aula-taller de matemáticas, que se adapten a cada edad o nivel. La determinación y obtención de figuras recortando y plegando papel o cartulina, nos permiten crear condiciones en las que nuestros alumnos planteen y resuelvan problemas, contando con apoyo visual, manipulación, y lo que es más importante: nuevas formas de construcción y experimentación.
Resumo:
En este trabajo se realiza un estudio que conduce a la obtención de fórmulas electorales, basadas en sucesiones de divisores, que aseguran una representación proporcional a la hora de asignar los escaños en cada circunscripción. Se ha encontrado una familia de fórmulas a la que pertenecen como casos particulares D’Hondt, StLagüe, Imperiali y el método Danés. De las propiedades matemáticas de las fórmulas obtenidas se deducen ventajas e inconvenientes que va a tener el uso de cada una de ellas.
Resumo:
Robert Glaser, en su artículo titulado “Variables en el aprendizaje por descubrimiento”, resalta que es la inducción el método seguido en el aprendizaje por descubrimiento, pero que la inducción lleva implícito el aprendizaje con errores.
Resumo:
La propuesta de reforma del sistema educativo ha proporcionado la oportunidad de: plantear a fondo cómo debe ser la enseñanza no universitaria, constituir y formar equipos técnicos, elaborar nuevas propuestas teóricas, elaborar materiales acordes a las nuevas propuestas didácticas, plantear la formación de profesorado como necesidad acuciante (inicial y permanente).
Resumo:
Nuestro trabajo en la E.U. de Formación de Maestros de Ciudad Real, nos ha ofrecido la posibilidad de orientarnos hacia un campo muy específico de las matemáticas como es el de su didáctica. En los estudios universitarios de la Licenciatura de Matemáticas hemos recibido una formación vacía en Didáctica. Ha sido pues el trabajo con nuestros alumnos en el aula, la búsqueda de libros, cursos y compañeros interesados en este tema, los que han posibilitado esta experiencia.
Resumo:
En mi conferencia consideraré varias maneras de utilizar la historia de las matemáticas en la didáctica de las matemáticas para la escuela obligatoria; se trata de experiencias y reflexiones relacionadas con la elaboración y la experimentación de currículos para la enseñanza de las Matemáticas en las edades comprendidas entre los 6 y los 13 años, desarrollados a partir de 1975 en el grupo de universitarios y enseñantes que coordino personalmente en Génova. El trabajo se ha efectuado en colaboración con Elda Guala; algunos artículos relacionados con estas cuestiones ya han sido publicados o están en curso de publicación.
Resumo:
El artículo presenta un método, de naturaleza indirecta, que puede ayudar a probar ciertos resultados que involucran sucesiones y funciones continuas que frecuentemente aparecen en la topología de R^n.
Resumo:
En este ensayo se propone el uso de una razón que permite determinar la secuencia de las series cuyas sumas son cuadrados perfectos; estas soluciones las usamos posteriormente para determinar algunos primos de la forma 4n+1, descubrimos una nueva razón que relaciona la constante Pi y un número primo de diez cifras de la forma 4n+1. Más adelante describimos la relación de esta clase de números primos con los llamados primos gemelos, lo que nos permite replantear la Conjetura Binaria de Goldbach en términos de una igualdad que involucra exclusivamente las clases de números primos que nos ocupan.
Resumo:
En este artículo se muestra una forma de programar un evaluador de expresiones matemáticas en JAVA. El programa se construye paso a paso y se explican detalladamente las partes más importantes del mismo. El evaluador consta de dos partes o módulos, el primero se encarga de convertir la expresión digitada a notación postfija que es más sencilla para el computador; el segundo es el que evalúa la expresión que se obtuvo en un valor específico. Para poder comprender y reescribir este programa se necesita tener conocimientos básicos en la programación en JAVA, sin embargo, se explicará el uso de varias primitivas utilizadas y de algunos conceptos básicos de programación.
Resumo:
Se repasa el planteo tradicional del criterio de la integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge.
Resumo:
El presente trabajo consiste en la segunda parte de una aplicación de los valores y vectores propios de una matriz, para resolver una relación de recurrencia homogénea lineal con coeficientes constantes. La aplicación abordada utiliza la teoría de matrices de Jordan, para generalizar el método de trabajo que se expuso en la primera parte de este artículo.
Resumo:
En este artículo se presentan cuatro propiedades topológicas del conjunto de los números reales, R, que, evidentemente o no, resultan ser todas equivalentes al Axioma del Extremo Superior (AES).
Resumo:
A discretized series of events is a binary time series that indicates whether or not events of a point process in the line occur in successive intervals. Such data are common in environmental applications. We describe a class of models for them, based on an unobserved continuous-time discrete-state Markov process, which determines the rate of a doubly stochastic Poisson process, from which the binary time series is constructed by discretization. We discuss likelihood inference for these processes and their second-order properties and extend them to multiple series. An application involves modeling the times of exposures to air pollution at a number of receptors in Western Europe.