963 resultados para Selective Estrogen Receptor Modulators
Resumo:
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission. (C) 1997 Elsevier Science Inc.
Resumo:
Background: Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas. Objectives: The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells. Patients: Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied. Methods: Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma. Results: IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28 -2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose-and time-dependent manner in both cell lines through a significant increase of apoptosis. Conclusion: IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.
Resumo:
Extensive lymphocyte apoptosis may be an important cause of immune suppression in sepsis. Here we investigated the effect of LPS tolerance on lymphocyte apoptosis in an experimental model of polymicrobial infection. Tolerance was induced by the injection of lipopolysaccharide (1.0 mg/kg/subcutaneously) once a day for 5 days. Macroarray analysis of mRNA isolated from T-(CD4) lymphocytes was used to identify genes that are differentially expressed during LPS tolerance. In addition, assessment of the expression of apoptosis-associated lymphocyte gene products and apoptotic events was performed on the 8th day; 6 h after the terminal challenge with polymicrobial infection or high-dose LPS administration. Survival studies with polymicrobial infection were also conducted. LPS tolerance induced a broad reprogramming of cell death pathways, including a suppression of receptor-mediated and mitochondrial apoptotic pathways, inflammatory caspases, alternate apoptotic pathways, as well as reduced expression of genes involved in necrosis. These alterations led to a marked resistance of lymphocytes against cell death during the subsequent period of sepsis. In addition, LPS tolerance produced an increased differentiation of T-lymphocytes to T(H)1 and T(H)2, with a T(H)1 differentiation predominance. Thus, in the current study we provide an evidence for a marked reprogramming of gene expression of multiple cell death pathways during LPS tolerance. These alterations may play a significant role in the observed protection of the animals from a subsequent lethal polymicrobial sepsis challenge. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The present study aimed to verify the time course of the effects of environmental levels of urban air pollution toxicity on lung arterioles. BALB/c mice (n = 56) were continuously exposed to selective chambers equipped with (filtered, F) or without (non-filtered, NF) filter devices for particles and toxic gases for 24 h/day, over 14, 21, 30 or 45 days. After exposure, we evaluated the lumen-wall relationship (an estimator of arteriolar narrowing), endothelial nitric oxide synthase (eNOS) and endothelin type A receptor (ETAr) expression in the vascular wall and inflammatory influx of the peribronchiolar area. Concentrations of fine particulate matter (PM <= 2.5 mu g/m(3)), nitrogen dioxide (NO(2)), black smoke (BS), humidity and temperature in both the environment and inside the chambers were measured daily. Filters cleared 100% of BS and 97% of PM inside the F chamber. The arteriole wall of the lungs of mice from NF chamber had an increased ETAr expression (p <= 0.042) concomitant to a decrease in the lumen/wall ratio (p = 0.02) on the early days of exposure, compared to controls. They also presented a progressive increment of inflammatory influx in the peribronchiolar area during the study (p = 0.04) and decrement of the eNOS expression on the 45th day of exposure in both vascular layers (p <= 0.03). We found that after 14 days of exposure, the ambient levels of air pollutants in Sao Paulo induced vasoconstriction that was associated with an increase in ETAr expression. These vascular results do not appear to be coupled to the progressive inflammatory influx in lung tissue, suggesting a down-regulation of vasoconstrictive mechanisms through an imbalance in the cytokines network. It is likely that these responses are protective measures that decrease tissue damage brought about by continuous exposure to air pollutants. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In human heart there is now evidence for the involvement of four beta-adrenoceptor populations, three identical to the recombinant beta(1)-, beta(2)- and beta(3)-adrenoceptors, and a fourth as yet uncloned putative beta-adrenoceptor population, which we designate provisionally as the cardiac putative beta(4)-adrenoceptor. This review described novel features of beta-adrenoceptors as modulators of cardiac systolic and diastolic function. We also discuss evidence for modulation by unoccupied beta(1)- and beta(2)-adrenoceptors. Human cardiac and recombinant beta(1)- and beta(2)-adrenoceptors are both mainly coupled to adenylyl cyclase through Gs protein, the latter more tightly than the former. Activation of both human beta(1)- and beta(2)-adrenoceptors not only increases cardiac force during systole but also hastens relaxation through cyclic AMP-dependent phosphorylation of phospholamban and troponin I, thereby facilitating diastolic function. Furthermore, both beta(1) and beta(2)-adrenoceptors can mediate experimental arrhythmias in human cardiac preparations elicited by noradrenaline and adrenaline. Human ventricular beta(3)-adrenoceptors appear to be coupled to a pertussis toxin-sensitive protein (Gi?). beta(3)-Adrenoceptor-selective agonists shorten the action potential and cause cardiodepression, suggesting direct coupling of a Gi protein to a K+ channel. In a variety of species, including man, cardiac putative beta(4)-adrenoceptors mediate cardiostimulant effects of non-conventional partial agonists, i.e. high affinity beta(1)- and beta(2)-adrenoceptor blockers that cause agonist effects at concentrations considerably higher than those that block these receptors. Putative beta(4)-adrenoceptors appear to be coupled positively to a cyclic AMP-dependent cascade and can undergo some desensitisation.
Resumo:
Background The protease-activated receptor 1 (PAR-1), the main platelet receptor for thrombin, represents a novel target for treatment of arterial thrombosis, and SCH 530348 is an orally active, selective, competitive PAR-1 antagonist. We designed TRA.CER to evaluate the efficacy and safety of SCH 530348 compared with placebo in addition to standard of care in patients with non-ST-segment elevation (NSTE) acute coronary syndromes (ACS) and high-risk features. Trial design TRA.CER is a prospective, randomized, double-blind, multicenter, phase III trial with an original estimated sample size of 10,000 subjects. Our primary objective is to demonstrate that SCH 530348 in addition to standard of care will reduce the incidence of the composite of cardiovascular death, myocardial infarction (MI), stroke, recurrent ischemia with rehospitalization, and urgent coronary revascularization compared with standard of care alone. Our key secondary objective is to determine whether SCH 530348 will reduce the composite of cardiovascular death, MI, or stroke compared with standard of care alone. Secondary objectives related to safety are the composite of moderate and severe GUSTO bleeding and clinically significant TIMI bleeding. The trial will continue until a predetermined minimum number of centrally adjudicated primary and key secondary end point events have occurred and all subjects have participated in the study for at least I year. The TRA.CER trial is part of the large phase III SCH 530348 development program that includes a concomitant evaluation in secondary prevention. Conclusion TRA.CER will define efficacy and safety of the novel platelet PAR-1 inhibitor SCH 530348 in the treatment of high-risk patients with NSTE ACS in the setting of current treatment strategies. (Am Heart J 2009; 158:327-34.)
Resumo:
Objective: To analyze the antiangiogenic effects of the selective cyclooxygenase-2 (COX-2) inhibitor parecoxib on the growth of endometrial implants in a rat model of peritoneal endometriosis. Design: Pharmacologic interventions in an experimental model of peritoneal endometriosis. Setting: Research laboratory in the Federal University of Rio de Janeiro. Animal(s): Twenty female Sprague-Dawley rats with experimentally induced endometriosis. Intervention(s): After implantation and establishment of autologous endometrium onto the peritoneum abdominal wall, rats were randomized into groups and treated with parecoxib or the vehicle by IM injection for 30 days. Main Outcome Measure(s): Vascular density, the expression of vascular endothelial growth factor (VEGF) and its receptor Flk-1, the distribution of activated macrophages, the expression of COX-2, and the prostaglandin concentration in the endometriotic lesions treated with parecoxib were analyzed. Result(s): The treatment significantly decreased the implant size, and histologic examination indicated mostly atrophy and regression. A reduction in microvessel density and in the number of macrophages, associated with decreased expression of VEGF and Flk-1, also were observed. The treatment group showed a low concentration of prostaglandin E(2). Conclusion(s): These results suggest that the use of COX-2 selective inhibitors could be effective to suppress the establishment and growth of endometriosis, partially through their antiangiogenic activity. (Fertil Steril (R) 2010; 93: 2674-9. (C) 2010 by American Society for Reproductive Medicine.)
Effects of metoclopramide-induced hyperprolactinemia on the prolactin receptor of murine endometrium
Resumo:
Objective: To evaluate the effects of metoclopramide-induced hyperprolactinemia, on the prolactin receptor of murine endometrium. Design: Experimental study using the RNA extraction to detect tissue prolactin recepter isoforms by reverse-transcriptase polymerase chain reaction (RT-PCR). Setting: University-based laboratory. Animal(s): Seventy-two female swiss albino mice (Mus musculus), approximately 100 days old, were divided into six 12-animal groups: (Cl) nonoophorectomized mice given vehicle; (GII) nonoophorectomized mice treated with metoclopramide; (Gill) oophorectomized mice treated with metoclopramide; (GIV)oophorectomized mice treated with metoclopramide and 17 beta-estradiol; (GV) oophorectomized mice treated with metoclopramide and micronized progesterone; (GVI) oophorectomized mice treated with metoclopramide and a solution of 17 beta-estradiol and micronized progesterone. Intervention(s): Drugs were administered for 50 days. Following euthanasia, the middle portions of the uterine horns were removed, sectioned, and immediately frozen for RT-PCR procedures. Blood was collected for the dosage of prolactin and serum estrogen and progesterone using radioimmune assay. Main Outcome Measure(s): Identification of uterine prolactin receptor isoforms: Result(s): The PRL receptor and its isoform L were identified only in GI (control group) and GII (metoclopramide), the two groups with nonoophorectomized animals. The amount of PRL receptor mRNA and that of its isoform L from GII were the largest. No other isoforms of the prolactin receptor were identified in any of the groups. Conclusion(s): Our results suggest that replacement of estrogen and progestin may not increase the mRNA of endometrial PRL receptor in metoclopromide-induced hyperprolactinemia in rats after castration. (Fertil Steril (R) 2010;93:1643-9. (C)2010 by American Society for Reproductive Medicine.)
Resumo:
Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol`s effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.
Resumo:
Interleukin (IL)-1 alpha and beta are important modulators of many functions of corneal epithelial and stromal cells that occur following injury to the cornea, including the influx of bone marrow-derived inflammatory cells into the stroma attracted by chemokines released from the stroma and epithelium. In this study, we examined the effect of topical soluble IL-1 receptor antagonist on bone marrow-derived cell influx following corneal epithelial scrape injury in a mouse model. C57BL/6 mice underwent corneal epithelial scrape followed by application of IL-1 receptor antagonist (Amgen, Thousand Oaks, CA) at a concentration of 20 mg/ml or vehicle for 24 h prior to immunocytochemical detection of marker CD11b-positive cells into the stroma. In two experiments, topical IL-1 receptor antagonist had a marked effect in blocking cell influx. For example, in experiment 1, topical IL-1 receptor antagonist markedly reduced detectible CD11b-positive cells into the corneal stroma at 24 It after epithelial injury compared with the vehicle control (3.5 +/- 0.5 (standard error of the mean) cells/400x field and 13.9 +/- 1.2 cells/400x field, respectively, p < 0.01). A second experiment with a different observer performing cell counting had the same result. Thus, the data demonstrate conclusively that topical IL-1 receptor antagonist markedly down-regulates CD-11b-positive monocytic cell appearance in the corneal stroma. Topical IL-1 receptor antagonist could be an effective adjuvant for clinical treatment of corneal conditions in which unwanted inflammation has a role in the pathophysiology of the disorder. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Lipopolysaccharide (LPS) stimulates cytoplasmic accumulation of pro-interleukin (IL)-1 beta. Activation of P2X(7) receptors stimulates conversion of pro-IL-1 beta into mature IL-1 beta, which is then secreted. Because both LPS (in vivo) and IL-1 beta (in vitro) decrease vascular reactivity to contractile agents, we hypothesized the following: 1) P2X(7) receptor activation contributes to LPS-induced vascular hyporeactivity, and 2) IL-1 beta mediates this change. Thoracic aortas were obtained from 12-week-old male C57BL/6 mice. The aortic rings were incubated for 24 h in Dulbecco`s modified Eagle`s medium, LPS, benzoylbenzoyl-ATP (BzATP; P2X(7) receptor agonist), LPS plus BzATP, oxidized ATP (oATP; P2X(7) receptor antagonist), or oATP plus LPS plus BzATP. After the treatment, the rings were either mounted in a myograph for evaluation of contractile activity or homogenized for IL-1 beta and inducible nitric-oxide synthase (iNOS) protein measurement. In endothelium-intact aortic rings, phenylephrine (PE)-induced contractions were not altered by incubation with LPS or BzATP, but they significantly decreased in aortic rings incubated with LPS plus BzATP. Treatment with oATP or IL-1ra (IL-1 beta receptor antagonist) reversed LPS plus BzATP-induced hyporeactivity to PE. In the presence of N(G)-nitro-L-arginine methyl ester or N-([3-(aminomethyl) phenyl] methyl) ethanimidamide (selective iNOS inhibitor), the vascular hyporeactivity induced by LPS plus BzATP on PE responses was not observed. BzATP augmented LPS-induced IL-1 beta release and iNOS protein expression, and these effects were also inhibited by oATP. Moreover, incubation of endothelium-intact aortic rings with IL-1 beta induced iNOS protein expression. Thus, activation of P2X 7 receptor amplifies LPS-induced hyporeactivity in mouse endothelium-intact aorta, which is associated with IL-1 beta-mediated release of nitric oxide by iNOS.
Resumo:
The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific alpha(2)-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific alpha(1)-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V(1)-vasopressin antagonist dTyr(CH(2))(5)(Me)AVP (50 mu g/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local alpha(2)-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.
Resumo:
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Activation of 5-HT2C receptors in limbic structures such as the amygdala and hippocampus increases anxiety. Indirect evidence obtained with non-selective 5-HT2C-interacting drugs suggests that the same may occur in the dPAG, a brainstem region consistently implicated in the genesis/regulation of panic attacks. In this study we used more selective agonists and antagonists to unveil the role played by dPAG 5-HT2C receptors in the regulation of anxiety- and panic-related defensive behaviors. Our results showed that intra-dPAG microinjection of the endogenous agonist 5-HT (20 nmol) or the 5-HT2C receptor agonists MK-212 (1 and 10 nmol) and RO-600175 (40 nmol) significantly increased inhibitory avoidance acquisition in rats tested in the elevated T-maze, suggesting an anxiogenic effect. 5-HT, but not the two 5-HT2C receptor agonists, inhibited escape performance. In the elevated T-maze, inhibitory avoidance and escape responses have been related to generalized anxiety and panic attacks, respectively. The behavioral effects caused by 5-HT and MK-212 were fully blocked by previous local microinjection of the 5-HT2C receptor antagonist SB-242084. Intra-dPAG injection of MK-212 also failed to affect escape expression in another test relating this behavior to panic, the electrical stimulation of the dPAG. Overall, the results indicate that 5-HT2C receptors in the dPAG are preferentially involved in the regulation of defensive behaviors related to anxiety, but not panic. This finding extends to the dPAG the prominent role that has been attributed to 5-HT2C receptors in anxiety generation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The overexpression of cyclooxygenase (COX)-2 is a frequent event in squamous cell carcinomas of the head and neck (HNSCC), and non-steroidal anti-inflammatory drugs, which are potent inhibitors of COX-1 and COX-2, exert chemopreventive effects on HNSCC cancer development. COX-2 promotes the release of the pro-inflammatory mediator prostaglandin E2 (PGE2), which acts on its cell surface G protein-coupled receptors EP1, EP2, EP3, and EP4. Here, we investigated the role of PGE2 and its receptors in cellular proliferation in HNSCC. The expression of COX-2 and EP1-4 was examined in immortalized oral epithelial cells and in a representative panel of HNSCC cell lines, and based on these data EP1-EP3 and COX-2 expression were evaluated by immunohistochemistry in a large clinical sample collection using HNSCC tissue microarrays. The ability of selective COX-2 inhibition to block PGE2 secretion was measured by ELISA specific assays. The effects of PGE2 on cell proliferation were evaluated using PGE2, its stable analog, and EP2 and EP3-specific synthetic agonists. The results presented here show that HNSCC tumoral lesions and their derived cell lines constitutively express COX-2 and the EP1, EP2 and EP3 receptors for PGE2. HNSCC cells secrete PGE2, which can be suppressed by low concentrations of COX-2 selective inhibitors, without inhibiting cell proliferation. Exogenously added stable PGE2 and EP3-specific agonists induce DNA synthesis in all HNSCC cell lines tested. Overall, our study supports the emerging notion that PGE2 produced in the tumor microenvironment by the overexpression of COX-2 in tumoral and inflammatory cells may promote the growth of HNSCC cells in an autocrine and paracrine fashion by acting on PGE2 receptors that are widely expressed in most HNSCC cancer cells. In particular, our findings suggest that EP3 receptor may play a more prominent role in HNSCC cell growth promotion, thus providing a rationale for the future evaluation of this PGE2 receptor as a target for HNSCC prevention strategies. Published by Elsevier Ltd.