950 resultados para Saturation degree
Resumo:
The study of inorganic carbon chemistry of the coastal ocean is conducted in the Gulf of Cádiz (GoC). Here we describe observations obtained during 4 sampling cruises in March, June, September and November 2015. The primary data set consists of state-of-the-art measurements of the keystone parameters of the marine CO2 system: Total Alkalinity (TA), pH, dissolved inorganic carbon (DIC). We have then calculated aragonite and calcite saturation state. The distribution of inorganic carbon system parameters in the north eastern shelf of the Gulf of Cádiz showed temporal and spatial variability. River input, mixing, primary production, respiration and remineralization were factors that controlled such distributions. Data related to carbonate saturation of calcite and aragonite reveal the occurrence of a supersaturated water; in any case, both species increased with distance and decreased with depth. The carbon system parameters present a different behaviour close to the coast to offshore ad at deeper water. In this area six water masses are clearly identified by their different chemical properties: Surface Atlantic Water, North Atlantic Central Water (NACW) and Mediterranean Water (MOW). Moreover, with this work the measurement of calcium in seawater is optimize, allowing a better quantification for future work of the saturation state of CaCO3.
Resumo:
Background The goal when resuscitating trauma patients is to achieve adequate tissue perfusion. One parameter of tissue perfusion is tissue oxygen saturation (StO2), as measured by near infrared spectroscopy. Using a commercially available device, we investigated whether clinically relevant blood loss of 500 ml in healthy volunteers can be detected by changes in StO2 after a standardized ischemic event. Methods We performed occlusion of the brachial artery for 3 minutes in 20 healthy female blood donors before and after blood donation. StO2 and total oxygenated tissue hemoglobin (O2Hb) were measured continuously at the thenar eminence. 10 healthy volunteers were assessed in the same way, to examine whether repeated vascular occlusion without blood donation exhibits time dependent effects. Results Blood donation caused a substantial decrease in systolic blood pressure, but did not affect resting StO2 and O2Hb values. No changes were measured in the blood donor group in the reaction to the vascular occlusion test, but in the control group there was an increase in the O2Hb rate of recovery during the reperfusion phase. Conclusion StO2 measured at the thenar eminence seems to be insensitive to blood loss of 500 ml in this setting. Probably blood loss greater than this might lead to detectable changes guiding the treating physician. The exact cut off for detectable changes and the time effect on repeated vascular occlusion tests should be explored further. Until now no such data exist.
Resumo:
Excessive consumption of acidic drinks and foods contributes to tooth erosion. The aims of the present in vitro study were twofold: (1) to assess the erosive potential of different dietary substances and medications; (2) to determine the chemical properties with an impact on the erosive potential. We selected sixty agents: soft drinks, an energy drink, sports drinks, alcoholic drinks, juice, fruit, mineral water, yogurt, tea, coffee, salad dressing and medications. The erosive potential of the tested agents was quantified as the changes in surface hardness (ΔSH) of enamel specimens within the first 2 min (ΔSH2-0 = SH2 min - SHbaseline) and the second 2 min exposure (ΔSH4-2 = SH4 min - SH2 min). To characterise these agents, various chemical properties, e.g. pH, concentrations of Ca, Pi and F, titratable acidity to pH 7·0 and buffering capacity at the original pH value (β), as well as degree of saturation (pK - pI) with respect to hydroxyapatite (HAP) and fluorapatite (FAP), were determined. Erosive challenge caused a statistically significant reduction in SH for all agents except for coffee, some medications and alcoholic drinks, and non-flavoured mineral waters, teas and yogurts (P < 0·01). By multiple linear regression analysis, 52 % of the variation in ΔSH after 2 min and 61 % after 4 min immersion were explained by pH, β and concentrations of F and Ca (P < 0·05). pH was the variable with the highest impact in multiple regression and bivariate correlation analyses. Furthermore, a high bivariate correlation was also obtained between (pK - pI)HAP, (pK - pI)FAP and ΔSH.
Resumo:
The literature on the erosive potential of drinks and other products is summarised, and aspects of the conduct of screening tests as well as possible correlations of the erosive potential with various solution parameters are discussed. The solution parameters that have been suggested as important include pH, acid concentration (with respect to buffer capacity and concentration of undissociated acid), degree of saturation, calcium and phosphate concentrations, and inhibitors of erosion. Based on the available data, it is concluded that the dominant factor in erosion is pH. The effect of buffer capacity seems to be pH dependent. The degree of saturation probably has a non-linear relationship with erosion. While calcium at elevated concentrations is known to reduce erosion effectively, it is not known whether it is important at naturally occurring concentrations. Fluoride at naturally occurring concentrations is inversely correlated with erosive potential, but phosphate is probably not. Natural plant gums, notably pectin, do not inhibit erosion, so they are unlikely to interfere with the prediction of erosive potential. The non-linearity of some solution factors and interactions with pH need to be taken into account when developing multivariate models for predicting the erosive potential of different solutions. Finally, the erosive potential of solutions towards enamel and dentine might differ.
Resumo:
The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion.
Resumo:
PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene's test, one and three-way ANOVA, and Tukey HSD test (alpha = 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (P< 0.0001). Tetric Ceram was the softest material followed by Esthet-X and Filtek Z250 (P< 0.001). Only the restorative material had a significant effect on degree of conversion (P< 0.001): Esthet-X had the lowest degree of conversion followed by Filtek Z250 and Tetric Ceram. Curing mode (P= 0.007) and material (P< 0.001) had significant effect on wear. Higher wear resulted from the pulse-delay curing mode when compared to continuous curing, and Filtek Z250 showed the lowest wear followed by Esthet-X and Tetric Ceram.
Resumo:
The Rankin convolution type Dirichlet series D-F,D-G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series D-F,D-G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.
Resumo:
Murray's law describes the optimal branching anatomy of vascular bifurcations. If Murray's law is obeyed, shear stress is constant over the bifurcation. Associations between Murray's law and intravascular ultrasound (IVUS) assessed plaque composition near coronary bifurcations have not been investigated previously.
Resumo:
Learned irrelevance (LIrr) refers to a form of selective learning that develops as a result of prior noncorrelated exposures of the predicted and predictor stimuli. In learning situations that depend on the associative link between the predicted and predictor stimuli, LIrr is expressed as a retardation of learning. It represents a form of modulation of learning by selective attention. Given the relevance of selective attention impairment to both positive and cognitive schizophrenia symptoms, the question remains whether LIrr impairment represents a state (relating to symptom manifestation) or trait (relating to schizophrenia endophenotypes) marker of human psychosis. We examined this by evaluating the expression of LIrr in an associative learning paradigm in (1) asymptomatic first-degree relatives of schizophrenia patients (SZ-relatives) and in (2) individuals exhibiting prodromal signs of psychosis ("ultrahigh risk" [UHR] patients) in each case relative to demographically matched healthy control subjects. There was no evidence for aberrant LIrr in SZ-relatives, but LIrr as well as associative learning were attenuated in UHR patients. It is concluded that LIrr deficiency in conjunction with a learning impairment might be a useful state marker predictive of psychotic state but a relatively weak link to a potential schizophrenia endophenotype.
Resumo:
Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.