974 resultados para Sap flow density
Resumo:
A pulsed wall jet has been used to simulate the gust front of a thunderstorm downburst. Flow visualization, wind speed and surface pressure measurements were obtained. The characteristics of the hypothesized ring vortex of a full-scale downburst were reproduced at a scale estimated to be 1:3000.
Resumo:
A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.
Resumo:
There has been considerable recent interest in the genetic, biological and epidemiological basis of mammographic density (MD), and the search for causative links between MD and breast cancer (BC) risk. This report will critically review the current literature on MD and summarize the current evidence for its association with BC. Keywords 'mammographic dens*', 'dense mammary tissue' or 'percent dens*' were used to search the existing literature in English on PubMed and Medline. All reports were critically analyzed. The data were assigned to one of the following aspects of MD: general association with BC, its relationship with the breast hormonal milieu, the cellular basis of MD, the generic variations of MD, and its significance in the clinical setting. MD adjusted for age, and BMI is associated with increased risk of BC diagnosis, advanced tumour stage at diagnosis and increased risk of both local recurrence and second primary cancers. The MD measures that predict BC risk have high heritability, and to date several genetic markers associated with BC risk have been found to also be associated with these MD risk predictors. Change in MD could be a predictor of the extent of chemoprevention with tamoxifen. Although the biological and genetic pathways that determine and perhaps modulate MD remain largely unresolved, significant inroads are being made into the understanding of MD, which may lead to benefits in clinical screening, assessment and treatment strategies. This review provides a timely update on the current understanding of MD's association with BC risk.
Resumo:
Mammographic density (MD) is a strong heritable risk factor for breast cancer, and may decrease with increasing parity. However, the biomolecular basis for MD-associated breast cancer remains unclear, and systemic hormonal effects on MD-associated risk is poorly understood. This study assessed the effect of murine peripartum states on high and low MD tissue maintained in a xenograft model of human MD. Method High and low MD human breast tissues were precisely sampled under radiographic guidance from prophylactic mastectomy specimens of women. The high and low MD tissues were maintained in separate vascularised biochambers in nulliparous or pregnant SCID mice for 4 weeks, or mice undergoing postpartum involution or lactation for three additional weeks. High and low MD biochamber material was harvested for histologic and radiographic comparisons during various murine peripartum states. High and low MD biochamber tissues in nulliparous mice were harvested at different timepoints for histologic and radiographic comparisons. Results High MD biochamber tissues had decreased stromal (p = 0.0027), increased adipose (p = 0.0003) and a trend to increased glandular tissue areas (p = 0.076) after murine postpartum involution. Stromal areas decreased (p = 0.042), while glandular (p = 0.001) and adipose areas (p = 0.009) increased in high MD biochamber tissues during lactation. A difference in radiographic density was observed in high (p = 0.0021) or low MD biochamber tissues (p = 0.004) between nulliparous, pregnant and involution groups. No differences in tissue composition were observed in high or low MD biochamber tissues maintained for different durations, although radiographic density increased over time. Conclusion High MD biochamber tissues had measurable histologic changes after postpartum involution or lactation. Alterations in radiographic density occurred in biochamber tissues between different peripartum states and over time. These findings demonstrate the dynamic nature of the human MD xenograft model, providing a platform for studying the biomolecular basis of MD-associated cancer risk. © 2013 Springer Science+Business Media New York.
Resumo:
Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.
Resumo:
Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and presents a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning for network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions.
Resumo:
Mammographic density (MD) is the area of breast tissue that appears radiologically white on mammography. Although high MD is a strong risk factor for breast cancer, independent of BRCA1/2 mutation status, the molecular basis of high MD and its associated breast cancer risk is poorly understood. MD studies will benefit from an animal model, where hormonal, gene and drug perturbations on MD can be measured in a preclinical context. High and low MD tissues were selectively sampled by stereotactic biopsy from operative specimens of high-risk women undergoing prophylactic mastectomy. The high and low MD tissues were transferred into separate vascularised biochambers in the groins of SCID mice. Chamber material was harvested after 6 weeks for histological analyses and immunohistochemistry for cytokeratins, vimentin and a human-specific mitochondrial antigen. Within-individual analysis was performed in replicate mice, eliminating confounding by age, body mass index and process-related factors, and comparisons were made to the parental human tissue. Maintenance of differential MD post-propagation was assessed radiographically. Immunohistochemical staining confirmed the preservation of human glandular and stromal components in the murine biochambers, with maintenance of radiographic MD differential. Propagated high MD regions had higher stromal (p = 0.0002) and lower adipose (p = 0.0006) composition, reflecting the findings in the original human breast tissue, although glands appeared small and non-complex in both high and low MD groups. No significant differences were observed in glandular area (p = 0.4) or count (p = 0.4) between high and low MD biochamber tissues. Human mammary glandular and stromal tissues were viably maintained in murine biochambers, with preservation of differential radiographic density and histological features. Our study provides a murine model for future studies into the biomolecular basis of MD as a risk factor for breast cancer.
Resumo:
Social Interiors (Julian Knowles, Rik Rue, Shane Fahey) are currently developing a major sound art project entitled Flux Density, in collaboration with a team of artists, focused on investigating the changing relationships between emerging digital technologies and traditional ‘obsolete’ analogue media. The project has two main components. – a curated compilation and a live performance. It is a large scale curatorial and performance project led by Social Interiors with assistant curators Joel Stern, Alessio Cavallaro and Shannon O’Neill. Presentation - International Symposium of Electronic Art. Social Interiors are one of Australia’s best known experimental sound ensembles. Project will consist of an online compilation of historic music emerging from the 80s cassette culture era, remix based works by Social Interiors, and work from new cassette labels established in a post internet era. Performance project will take place in Sydney and consist of Social Interiors in performance/collaboration with a range of well known artists. Partners include ABC Radio, ISEA, and Extreme Records.
Resumo:
This teaching case describes how SAP, a leading global information technology (IT) solutions provider, embarked on a large-scale transformation program to implement a dual sustainability strategy of: (a) internally transforming the organization, and (b) addressing a business opportunity by developing IT solutions that enable their customers to become more sustainable. This case provides students with significant information about the development of SAP towards sustainability, including the company's underlying motivation, their approach to change and related challenges, and their use of IT to enable the transformation. The teaching case provides an opportunity to critically examine the benefits and risks of using IT in an effort to improve the sustainability of an organization, and to develop appropriate models for sustainable strategies and IT implementation efforts.
Resumo:
Nitrogenated carbon nanotips (NCNTPs) are synthesized by plasma-enhanced hot filament chemical vapor deposition from the hydrogen, methane, and nitrogen gas mixtures with different flow rate ratios of hydrogen to nitrogen. The morphological, structural, compositional, and electron field emission (EFE) properties of the NCNTPs were investigated by field emissionscanning electron microscopy, Raman spectroscopy, x ray photoelectron spectroscopy, and EFE high-vacuum system. It is shown that the NCNTPs deposited at an intermediate flow rate ratio of hydrogen to nitrogen feature the best size/shape and pattern uniformity, the highest nanotip density, the highest nitrogen concentration, as well as the best electron field emission performance. Several factors that come into play along with the nitrogen incorporation, such as the combined effect of the plasma sputtering and etching, the transition of sp 3carbon clusters to sp 2carbon clusters, the increase of the size of the sp 2 clusters, as well as the reduction of the work function, have been examined to interpret these experimental findings. Our results are highly relevant to the development of the next generation electron field emitters, flat panel displays, atomic force microscope probes, and several other advanced applications.
Resumo:
The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.
Resumo:
High mammographic density confers a significantly increased risk of breast cancer. As it is relatively common in the normal population the risk of cancer attributable to increased mammographic density could potentially account for an important percentage of total BCa cases. The underlying cause for high mammographic density and its association with increased BCa risk and progression is unknown. In this review we describe the work that has been done to define the histopathological characteristics of mammographic density. Mammograms define breast tissues with areas of high density due to an increased amount of radio-opaque tissue (stromal and epithelial cells) and also less areas of radiolucent fat. Histological work however can define the roles played by each cell type. We review the work that has been performed assessing changes in epithelial cells, stromal cells, the extracellular matrix, and immune infiltrate. To determine how these changes may be increasing breast cancer risk we also discuss the roles of each of the cell types in breast cancer initiation and progression.
Resumo:
A simple and effective method of controlling the growth of vertically aligned carbon nanotube arrays in a lowerature plasma is presented. Ni catalyst was pretreated by plasma immersion ion implantation prior to the nanotube growth by plasma-enhanced chemical vapor deposition. Both the size distribution and the areal density of the catalyst nanoparticles decrease due to the ion-surface interactions. Consequently, the resulting size distribution of the vertically aligned carbon nanotubes is reduced to 50 ∼ 100 nm and the areal density is lowered (by a factor of ten) to 10 8 cm -2, which is significantly different from the very-high-density carbon nanotube forests commonly produced by thermal chemical vapor deposition. The efficiency of this pretreatment is compared with the existing techniques such as neutral gas annealing and plasma etching. These results are highly relevant to the development of the next-generation nanoelectronic and optoelectronic devices that require effective control of the density of nanotube arrays.
Resumo:
Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices. © 2011 The Royal Society of Chemistry.