860 resultados para Reliability and availability
Resumo:
Tutkittu yritys on suomalainen maaleja ja lakkoja kansainvälisesti valmistava ja myyvä toimija. Yrityksessä otettiin vuonna 2010 käyttöön uudet tuotannon ja toimitusketjun tavoitteet ja suunnitelmat ja tämä tutkimus on osa tuota kokonaisvaltaista kehittämissuuntaa. Tutkimuksessa käsitellään tuotannon ja kunnossapidon tehokkuuden parantamis- ja mittaustyökalu OEE:tä ja tuotevaihtoaikojen pienentämiseen tarkoitettua SMED -työkalua. Työn teoriaosuus perustuu lähinnä akateemisiin julkaisuihin, mutta myös haastatteluihin, kirjoihin, internet sivuihin ja yhteen vuosikertomukseen. Empiriaosuudessa OEE:n käyttöönoton ongelmia ja onnistumista tutkittiin toistettavalla käyttäjäkyselyllä. OEE:n potentiaalia ja käyttöönottoa tutkittiin myös tarkastelemalla tuotanto- ja käytettävyysdataa, jota oli kerätty tuotantolinjalta. SMED:iä tutkittiin siihen perustuvan tietokoneohjelman avulla. SMED:iä tutkittiin teoreettisella tasolla, eikä sitä implementoitu vielä käytäntöön. Tutkimustuloksien mukaan OEE ja SMED sopivat hyvin esimerkkiyritykselle ja niissä on paljon potentiaalia. OEE ei ainoastaan paljasta käytettävyyshäviöiden määrää, mutta myös niiden rakenteen. OEE -tulosten avulla yritys voi suunnata rajalliset tuotannon ja kunnossapidon parantamisen resurssit oikeisiin paikkoihin. Työssä käsiteltävä tuotantolinja ei tuottanut mitään 56 % kaikesta suunnitellusta tuotantoajasta huhtikuussa 2016. Linjan pysähdyksistä ajallisesti 44 % johtui vaihto-, aloitus- tai lopetustöistä. Tuloksista voidaan päätellä, että käytettävyyshäviöt ovat vakava ongelma yrityksen tuotannontehokkuudessa ja vaihtotöiden vähentäminen on tärkeä kehityskohde. Vaihtoaikaa voitaisiin vähentää ~15 % yksinkertaisilla ja halvoilla SMED:illä löydetyillä muutoksilla työjärjestyksessä ja työkaluissa. Parannus olisi vielä suurempi kattavimmilla muutoksilla. SMED:in suurin potentiaali ei välttämättä ole vaihtoaikojen lyhentämisessä vaan niiden standardisoinnissa.
Resumo:
Cover title.
Resumo:
La vestibulodynie provoquée (VP) est la forme la plus répandue de douleur génito-pelvienne/trouble de la pénétration et la cause la plus fréquente de douleur vaginale chez les femmes pré-ménopausées. Les femmes qui en souffrent rapportent plus de détresse psychologique ainsi qu’un fonctionnement sexuel appauvri, une diminution de la fréquence des activités sexuelles et du plaisir, et plus d’attitudes négatives à l’égard de la sexualité. Les recherches portant sur les couples souffrant de VP ont montré le rôle prépondérant des variables relationnelles dans la modulation des conséquences sexuelles et psychologiques pour les femmes et leurs partenaires. Cependant, aucune analyse dyadique n’a été appliquée au facteur de risque étiologique le plus robuste, soit la maltraitance durant l’enfance. Par ailleurs, malgré des recommandations répétées pour inclure le partenaire dans le traitement psychologique pour la VP, aucune étude à ce jour n’a examiné l’efficacité d’une psychothérapie qui inclut systématiquement le partenaire et dont la cible est le couple. L’objectif général de cette thèse a été d’utiliser une perspective dyadique afin d’examiner les antécédents de maltraitance et l’efficacité d’une intervention conçue pour améliorer les issues des couples souffrant de VP. Le premier article vise à examiner les liens entre la maltraitance durant l’enfance des femmes souffrant de VP et leurs partenaires, et leur fonctionnement sexuel, leur ajustement psychologique, leur satisfaction conjugale et enfin avec la douleur rapportée par les femmes durant les relations sexuelles. Quarante-neuf couples souffrant de VP ont complété des questionnaires auto-rapportés. La maltraitance durant l’enfance chez les femmes était associée à un fonctionnement sexuel plus faible chez les femmes et les hommes, une augmentation de l’anxiété chez les femmes seulement, et une douleur affective accrue durant les relations sexuelles. La maltraitance durant l’enfance chez les hommes était associée à un fonctionnement sexuel plus faible, moins de satisfaction conjugale, plus d’anxiété chez les femmes et les hommes, et une douleur affective accrue durant les relations sexuelles rapportée par les femmes. En se basant sur les recommandations issues des études empiriques, une thérapie cognitive et comportementale pour les couples (TCCC) souffrant de VP a été développée. Le deuxième article présente les résultats d’une étude pilote testant son efficacité, fidélité et faisabilité potentielles. Neuf couples ont complété des questionnaires auto-rapportés pré- et post-traitement. La TCCC de 12 rencontres était manualisée. Les femmes ont rapporté une amélioration significative de la douleur, du fonctionnement et de la satisfaction sexuels, et les partenaires ont rapporté une amélioration significative de leur satisfaction sexuelle. Les couples ont rapporté des niveaux élevés de satisfaction quant à la psychothérapie, et les psychothérapeutes ont rapporté suivre le manuel de traitement de manière fidèle. Le troisième article, s’appuyant sur les résultats prometteurs de l’étude pilote, décrit le protocole de recherche pour un essai clinique randomisé mesurant l’efficacité de la TCCC comparée à une intervention médicale de première ligne, la lidocaïne topique, pour le traitement de la VP. Enfin, les implications cliniques et théoriques de la thèse sont discutées.
Resumo:
Nowadays the organizational scenario is changing in several aspects that affect organization commitment. Team learning construct has emerged as a tool to deal with these changes and the dynamic nature of this situation. Although team learning has acquired importance in recent years, instruments to measure team learning should be developed. The aim of this paper is to develop and validate a team learning scale, the Team Learning Questionnaire, attending to four dimensions of team learning: Continued Improvement Seeking, Dialogue Promotion and Open Communication, Collaborative Learning, and Strategic and Proactive Leadership that Promote Learning. Results provide evidence of the reliability and validity of the scale.
Resumo:
Objective: Evaluate the validity, reliability, and factorial invariance of the complete Portuguese version of the Oral Health Impact Profile (OHIP) and its short version (OHIP-14). Methods: A total of 1,162 adults enrolled in the Faculty of Dentistry of Araraquara/UNESP participated in the study; 73.1% were women; and the mean age was 40.7 ± 16.3 yr. We conducted a confirmatory factor analysis, where χ2/df, comparative fit index, goodness of fit index, and root mean square error of approximation were used as indices of goodness of fit. The convergent validity was judged from the average variance extracted and the composite reliability, and the internal consistency was estimated by Cronbach standardized alpha. The stability of the models was evaluated by multigroup analysis in independent samples (test and validation) and between users and nonusers of dental prosthesis. Results: We found best-fitting models for the OHIP-14 and among dental prosthesis users. The convergent validity was below adequate values for the factors “functional limitation” and “physical pain” for the complete version and for the factors “functional limitation” and “psychological discomfort” for the OHIP-14. Values of composite reliability and internal consistency were below adequate in the OHIP-14 for the factors “functional limitation” and “psychological discomfort.” We detected strong invariance between test and validation samples of the full version and weak invariance for OHIP-14. The models for users and nonusers of dental prosthesis were not invariant for both versions. Conclusion: The reduced version of the OHIP was parsimonious, reliable, and valid to capture the construct “impact of oral health on quality of life,” which was more pronounced in prosthesis users.
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Clínica.
Resumo:
Combining information on kinetics and kinematics of the trunk during gait is important for both clinical and research purposes, since it can help in better understanding the mechanisms behind changes in movement patterns in chronic low back pain patients. Although three-dimensional gait analysis has been used to evaluate chronic low back pain and healthy individuals, the reliability and measurement error of this procedure have not been fully established. The main purpose of this thesis is to gain a better understanding about the differences in the biomechanics of the trunk and lower limbs during gait, in patients and healthy individuals. To achieve these aims, three studies were developed. The first two, adopted a prospective design and focused on the reliability and measurement error of gait analysis. In these test-retest studies, chronic low back pain and healthy individuals were submitted to a gait assessment protocol, with two distinct evaluation moments, separated by one week. Gait data was collected using a 13-camera opto-electronic system and three force platforms. Data analysis included the computation of time-distance parameters, as well as the peak values for lower limb and trunk joint angles/moments. The third study followed a cross sectional design, where gait in chronic low back pain individuals was compared with matched controls. Step-to-step variability of the thoracic, lumbar and hips was calculated, and step-to-step deviations of these segments from their average pattern (residual rotations) were correlated to each other. The reliability studies in this thesis show that three-dimensional gait analysis is a reliable and consistent procedure for both chronic low back pain and healthy individuals. The results suggest varied reliability indices for multi-segment trunk joint angles, joint moments and time-distance parameters during gait, together with an acceptable level of error (particularly regarding sagittal plane). Our findings also show altered stride-to-stride variability of lumbar and thoracic segments and lower trunk joint moments in patients. These kinematic and kinetic results lend support to the notion that chronic low back pain individuals exhibit a protective movement strategy.
Resumo:
Background: The latest national census reports the population of Iranian children (1 - 8 years old) about 11 millions. On the other hand, the latest population policies approved by supreme cultural revolution council (SCRC) will make this population increase faster. Childhood development is one of the social determinants of health, of which “child’s play” is a part. Objectives: This study is an effort to identify difficulties and challenges of the plays influential on Iranian children’s health nationwide, in order to present enhancive strategies by utilizing the views of stakeholders and national studies. Patients and Methods: Analyzing children’s play stakeholders, main organizations were identified and views of 13 informed people involved in the field were investigated through deep semi-structured interview. A denaturalized approach was employed in analyzing the data. In addition to descriptions of the state, interventions development, and designing the conceptual model, national reports and studies, and other countries’ experiences were also reviewed. Results: Society’s little knowledge of “children’s plays”, absence of administrators for children’s play, shortage of public facilities for children’s play and improper geographical and demographic availability, absence of policies for Iranian “toy”, and little attention of media to the issue are the five major problems as stated by interviewees. Conclusions: The proposed interventions are presented as “promoting the educational levels of parents and selected administrators for children’s play”, “approving the play and toy policy for Iran 2025”, and “increasing public facilities for children’s play with defined distribution and availability”.
Resumo:
Nowadays, one of the most important areas of interest in archeology is the characterization of the submersed cultural heritage. Mediterranean Sea is rich in archaeological findings due to storms, accidents and naval battles since prehistoric times. Chemical analysis of submerged materials is an extremely valuable source of information on the origin and precedence of the wrecks, and also the raw materials employed during the manufacturing of the objects found in these sites. Nevertheless, sometimes it is not possible to extract the archaeological material from the marine environment due to size of the sample, the legislation or preservation purposes. In these cases, the in-situ analysis turns into the only alternative for obtaining information. In spite of this demand, no analytical techniques are available for the in-situ chemical characterization of underwater materials. The versatility of laser-induced breakdown spectroscopy (LIBS) has been successfully tested in oceanography 1. Advantages such as rapid and in situ analysis with no sample preparation make LIBS a suitable alternative for field measurements. To further exploit the inherent advantages of the technology, a mobile fiber-based LIBS platform capable of performing remote measurements up to 50 meters range has been designed for the recognition and identification of artworks in underwater archaeological shipwrecks. The LIBS prototype featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS) 2. The use of multi-pulse excitation allowed an increased laser beam energy (up to 95 mJ) transmitted through the optical fiber. This excitation mode results in an improved performance of the equipment in terms of extended range of analysis (to a depth of 50 m) and a broader variety of samples to be analyzed (i.e., rocks, marble, ceramics and concrete). In the present work, the design and construction considerations of the instrument are reported and its performance is discussed on the basis of the spectral response, the remote irradiance achieved upon the range of analysis and its influence on plasma properties, as well as the effect of the laser pulse duration and purge gas to the LIBS signal. Also, to check the reliability and reproducibility of the instrument for field analysis several robustness tests were performed outside the lab. Finally, the capability of this instrument was successfully demonstrated in an underwater archaeological shipwreck (San Pedro de Alcántara, Malaga).
Resumo:
Power distribution systems are susceptible to extreme damage from natural hazards especially hurricanes. Hurricane winds can knock down distribution poles thereby causing damage to the system and power outages which can result in millions of dollars in lost revenue and restoration costs. Timber has been the dominant material used to support overhead lines in distribution systems. Recently however, utility companies have been searching for a cost-effective alternative to timber poles due to environmental concerns, durability, high cost of maintenance and need for improved aesthetics. Steel has emerged as a viable alternative to timber due to its advantages such as relatively lower maintenance cost, light weight, consistent performance, and invulnerability to wood-pecker attacks. Both timber and steel poles are prone to deterioration over time due to decay in the timber and corrosion of the steel. This research proposes a framework for conducting fragility analysis of timber and steel poles subjected to hurricane winds considering deterioration of the poles over time. Monte Carlo simulation was used to develop the fragility curves considering uncertainties in strength, geometry and wind loads. A framework for life-cycle cost analysis is also proposed to compare the steel and timber poles. The results show that steel poles can have superior reliability and lower life-cycle cost compared to timber poles, which makes them suitable substitutes.
Resumo:
The dissertation reports on two studies. The purpose of Study I was to develop and evaluate a measure of cognitive competence (the Critical Problem Solving Skills Scale – Qualitative Extension) using Relational Data Analysis (RDA) with a multi-ethnic, adolescent sample. My study builds on previous work that has been conducted to provide evidence for the reliability and validity of the RDA framework in evaluating youth development programs (Kurtines et al., 2008). Inter-coder percent agreement among the TOC and TCC coders for each of the category levels was moderate to high, with a range of .76 to .94. The Fleiss’ kappa across all category levels was from substantial agreement to almost perfect agreement, with a range of .72 to .91. The correlation between the TOC and the TCC demonstrated medium to high correlation, with a range of r(40)=.68, p Study II reports an investigation of a positive youth development program using an Outcome Mediation Cascade (OMC) evaluation model, an integrated model for evaluating the empirical intersection between intervention and developmental processes. The Changing Lives Program (CLP) is a community supported positive youth development intervention implemented in a practice setting as a selective/indicated program for multi-ethnic, multi-problem at risk youth in urban alternative high schools in the Miami Dade County Public Schools (M-DCPS). The 259 participants for this study were drawn from the CLP’s archival data file. The study used a structural equation modeling approach to construct and evaluate the hypothesized model. Findings indicated that the hypothesized model fit the data (χ2 (7) = 5.651, p = .83; RMSEA = .00; CFI = 1.00; WRMR = .319). My study built on previous research using the OMC evaluation model (Eichas, 2010), and the findings are consistent with the hypothesis that in addition to having effects on targeted positive outcomes, PYD interventions are likely to have progressive cascading effects on untargeted problem outcomes that operate through effects on positive outcomes.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.
Resumo:
Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.
Resumo:
My study investigated internal consistency estimates of psychometric surveys as an operationalization of the state of measurement precision of constructs in industrial and organizational (I/O) psychology. Analyses were conducted of samples used in research articles published in the Journal of Applied Psychology between 1975 and 2010 in five year intervals (K = 934) from 480 articles yielding 1427 coefficients. Articles and their respective samples were coded for test-taker characteristics (e.g., age, gender, and ethnicity), research settings (e.g., lab and field studies), and actual tests (e.g., number of items and scale anchor points). A reliability and inter-item correlations depository was developed for I/O variables and construct groups. Personality measures had significantly lower inter-item correlations than other construct groups. Also, internal consistency estimates and reporting practices were evaluated over time, demonstrating an improvement in measurement precision and missing data.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.