924 resultados para Rapid Infrared Imager-Spectrometer (RIMAS)
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder haracterized by extreme sensitivity to actinic pigmentation changes in the skin and increased incidence of skin cancer. In some cases, patients are affected by neurological alterations. XP is caused by mutations in 8 distinct genes (XPA through XPG and XPV). The XP-V (variant) subtype of the disease results from mutations in a gene (XPV, also named POLH) which encodes for Polg, a member of the Y-DNA polymerase family. Although the presence and severity of skin and neurological dysfunctions differ between XP subtypes, there are overlapping clinical features among subtypes such that the sub-type cannot be deduced from the clinical features. In this study, in order to overcome this drawback, we undertook whole-exome sequencing in two XP sibs and their father. We identified a novel homozygous nonsense mutation (c.897T.G, p.Y299X) in POLH which causes the disease. Our results demonstrate that next generation sequencing is a powerful approach to rapid determination of XP genetic etiology.
Resumo:
Este trabajo pretende estudiar la utilidad de las rimas infantiles en la clase de inglés, para despertar en los profesores de inglés como lengua extranjera en Primaria la necesidad de enseñar el ritmo en sus clases como medio para mejorar las destrezas orales. Persigue, al mismo tiempo, estimular la búsqueda de otros materiales de tradición oral que pueden resultar útiles para la práctica del ritmo de la lengua inglesa como parte importante del aprendizaje.
Resumo:
Con el fin de fomentar la animación a la lectura, se hace al alumno participe del cuento. Por esta razón se presenta un cuento en el que los alumnos puedan participar comentando la lectura y evitando así que pierdan el hilo de ella. La interacción durante el transcurso de la lectura es esencial para que el alumno mantenga la atención y además una forma amena de trabajar algunas praxias que permitirán el fortalecimiento de los órganos bucofonatorios, algo necesario para una correcta fonética.
Resumo:
El art??culo forma parte de una secci??n de la revista dedicada a propuestas did??cticas.- Material fotocopiable
Resumo:
An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from July 1983 to the present. The algorithm rakes window brightness, temperatures from multiple satellites, both geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer, and generates 3-hourly global images on a 0.5 degrees by 0.5 degrees latitude-longitude grid. The gridding uses a hierarchical scheme based on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed. This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent processed images using a form of motion compensated interpolation based on the estimation of motion vectors using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also shown are examples of the usefulness of this type of data in GCM validation.
Resumo:
Ozone profiles from the Microwave Limb Sounder (MLS) onboard the Aura satellite of the NASA's Earth Observing System (EOS) were experimentally added to the European Centre for Medium-range Weather Forecasts (ECMWF) four-dimensional variational (4D-var) data assimilation system of version CY30R1, in which total ozone columns from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) onboard the Envisat satellite and partial profiles from the Solar Backscatter Ultraviolet (SBUV/2) instrument onboard the NOAA-16 satellite have been operationally assimilated. As shown by results for the autumn of 2005, additional constraints from MLS data significantly improved the agreement of the analyzed ozone fields with independent observations throughout most of the stratosphere, owing to the daily near-global coverage and good vertical resolution of MLS observations. The largest impacts were seen in the middle and lower stratosphere, where model deficiencies could not be effectively corrected by the operational observations without the additional information on the ozone vertical distribution provided by MLS. Even in the upper stratosphere, where ozone concentrations are mainly determined by rapid chemical processes, dense and vertically resolved MLS data helped reduce the biases related to model deficiencies. These improvements resulted in a more realistic and consistent description of spatial and temporal variations in stratospheric ozone, as demonstrated by cases in the dynamically and chemically active regions. However, combined assimilation of the often discrepant ozone observations might lead to underestimation of tropospheric ozone. In addition, model deficiencies induced large biases in the upper stratosphere in the medium-range (5-day) ozone forecasts.
Resumo:
We explore the potential predictability of rapid changes in the Atlantic meridional overturning circulation (MOC) using a coupled global climate model (HadCM3). Rapid changes in the temperature and salinity of surface water in the Nordic Seas, and the flow of dense water through Denmark Strait, are found to be precursors to rapid changes in the model's MOC, with a lead time of around 10 years. The mechanism proposed to explain this potential predictability relies on the development of density anomalies in the Nordic Seas which propagate through Denmark Strait and along the deep western boundary current, affecting the overturning. These rapid changes in the MOC have significant, and widespread, climate impacts which are potentially predictable a few years ahead. Whilst the flow through Denmark Strait is too strong in HadCM3, the presence of such potential predictability motivates the monitoring of water properties in the Nordic Seas and Denmark Strait.
Resumo:
The possibility of future rapid climatic changes is a pressing concern amongst climate scientists. For example, an abrupt collapse of the ocean's Thermohaline Circulation (THC) would rapidly cool the northern hemisphere and reduce the net global primary productivity of vegetation, according to computer models. It is unclear how to incorporate such low-probability, high-impact events into the development of economics policies. This paper reviews the salient aspects of rapid climate change relevant to economists and policy makers. The main scientific certainties and uncertainties are clearly delineated, with the aim of guiding economics goals and ensuring that they retain fidelity to their scientific underpinnings.
Resumo:
A fast radiative transfer model (RTM) to compute emitted infrared radiances for a very high resolution radiometer (VHRR), onboard the operational Indian geostationary satellite Kalpana has been developed and verified. This work is a step towards the assimilation of Kalpana water vapor (WV) radiances into numerical weather prediction models. The fast RTM uses a regression‐based approach to parameterize channel‐specific convolved level to space transmittances. A comparison between the fast RTM and the line‐by‐line RTM demonstrated that the fast RTM can simulate line‐by‐line radiances for the Kalpana WV channel to an accuracy better than the instrument noise, while offering more rapid radiance calculations. A comparison of clear sky radiances of the Kalpana WV channel with the ECMWF model first guess radiances is also presented, aiming to demonstrate the fast RTM performance with the real observations. In order to assimilate the radiances from Kalpana, a simple scheme for bias correction has been suggested.