968 resultados para Prolonged mechanical ventilation
Resumo:
Our aim was to determine whether antenatal corticosteroids improve perinatal adaptation of the pulmonary circulation in lambs with lung hypoplasia (LH). LH was induced in 12 ovine fetuses between 105 and 140 days gestation (term similar to 147 days); in 6 of these the ewe was given a single dose of betamethasone (11.4 mg im) 24 hr before delivery (LH + B). All lambs, including a control group (n = 6), were delivered at similar to 140 days and ventilated for 2 hr during which arterial pressures, pulmonary blood flow (PBF), and ventilating pressure and flow were recorded. During ventilation, respiratory system compliance was lower in both LH + B and LH groups than in controls. Pulmonary vascular resistance (PVR) was lower in LH + B lambs than in LH lambs and similar to controls; PBF was reduced in LH lambs but was restored to control levels by betamethasone. The mean density of small arteries of LH + B lambs was similar to that of LH lambs (P = 0.06) and lower than in controls; the thickness of the media of small pulmonary arteries from LH + B lambs was similar to that in LH lambs and thicker than in controls. VEGF mRNA levels were not different between groups. PDGF mRNA levels in LH + B lambs were higher than in LH lambs; a similar trend (P = 0.06) was seen for PECAM-1. SP-C mRNA levels were greater in both LH and LH + B lambs than in controls. Effects of betamethasone were greater on indices of pulmonary circulation than ventilation. We conclude that a single dose of maternal betamethasone 24 hr prior to birth has significant favorable effects on the postnatal adaptation of the pulmonary circulation in lambs with LH.
Resumo:
Objectives: Assess the effect of re-expansive respiratory patterns associated to respiratory biofeedback (RBF) on pulmonary function, respiratory muscle strength and habits in individuals with functional mouth breathing (FMB). Methods: Sixty children with FMB were divided into experimental and control groups. The experimental group was submitted to 15 sessions of re-expansive respiratory patterns associated to RBF (biofeedback pletsmovent; MICROHARD (R) V1.0), which provided biofeedback of the thoracic and abdominal movements. The control group was submitted to 15 sessions using biofeedback alone. Spirometry, maximum static respiratory pressure measurements and questions regarding habits (answered by parents/guardians) were carried out before and after therapy. The Student`s t-test for paired data and non-parametric tests were employed for statistical analysis at a 5% Level of significance. Results: Significant changes were found in forced vital. capacity, Tiffeneau index scores, maximum expiratory pressure, maximum inspiratory pressure and habits assessed in FMB with the use of RBF associated to the re-expansive patterns. No significant differences were found comparing the experimental and control groups. Conclusions: The results allow the conclusion that RBF associated to re-expansive patterns improves forced vital capacity, Tiffeneau index scores, respiratory muscle strength and habits in FMB and can therefore be used as a form of therapy for such individuals. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction. The quality and effectiveness of myocardial protection are fundamental problems to expand the use of and consequently good outcomes of donated hearts for transplantation. Objective. The purpose of this investigation was to compare the cardioprotective effects of Krebs-Henseleit, Bretschneider-HTK, St Thomas, and Celsior solutions using a modified nonrecirculating Langendorff column model of isolated perfused rat heart during prolonged cold storage. Materials and Methods. After removal 36 rat hearts underwent isolated perfusion into a Langendorff apparatus using Krebs-Henseleit solution for a 15-minute period of recovery; we excluded organs that did not maintain an aortic pressure above 100 m Hg. Subsequently, we equally distributed the hearts into four groups according to the cardioprotection solution; group 1, Krebs-Henseleit (control); group II, Bretschneider-HTK; group III, St Thomas; and group IV, Celsior. Each heart received the specific cardioplegic solution at 10 C for 2-hour storage at 20 C, before a 15 minutes perfusion with Krebs-Henseleit solution for recovery and stabilization. After 60 additional minutes of perfusion, every 5 minutes we determined heart rate (HR), coronary flow (CF), left ventricular systolic pressure (LVSP), and positive and negative peak of the first derivative of left ventricular pressure (+dP/dt and dP/dt, respectively). Results. Comparative analysis by Turkey`s test showed the following performances among the groups at 60 minutes of reperfusion: HR: II = IV > III > I; CF: II = IV > I = III; LVSP: IV > I = II = III; +dP/dt: IV > I = II = III; and dP/dt: IV = II > I = II. Conclusion. Cardioprotective solutions generally used in clinical practice are not able to avoid hemodynamic alterations in hearts exposed to prolonged ischemia. Celsior solution showed better performance than Bretschneider-HTK, St Thomas, and Krebs-Henseleit.
Resumo:
The kinetics of mechanical alloying have been investigated by examining the effect that ball mass has on the rate at which titanium carbide forms from the elements. By varying the ball density while keeping the ball diameter and the charge ratio constant, the collision energy was independently controlled. Grinding media with a density from 3.8 g cm(-3) (agate) to 16.4 g cm(-3) (tungsten carbide) were used. The reaction rate increases exponentially with ball mass until a critical level is reached, which is determined by the induced temperature rise. Above this level, collisions of higher energy have no advantage. It is also shown that the reaction rate increases exponentially with the rate at which strain accumulates in the reactants. It is suggested that the strain accumulation rate in mechanically induced reactions is analogous to temperature in thermally induced chemical reactions.
Resumo:
The synthesis of chromium carbides, Cr7C3 and Cr3C2, by mechanically allowing chromium and carbon powders has been investigated. Milling conditions were found to have a strong influence on the evolution of microstructure, with high collision energies being required to form carbide phases. Milling at intermediate energy levels resulted in the formation of an amorphous phase, and with low energy conditions only grain size refinement of Cr occurred with no evidence of any reaction between Cr and C. The amorphous phase was found to be the precursor to carbide formation. (C) 1997 Elsevier Science S.A.
Resumo:
The dynamics of mechanical milling in a vibratory mill have been studied by means of mechanical vibration, shock measurements, computer simulation and microstructural evolution measurements. Two distinct modes of ball motion during milling, periodic and chaotic vibration, were observed. Mill operation in the regime of periodic vibration, in which each collision provides a constant energy input to milled powders, enabled a quantitative description of the effect of process parameters on system dynamics. An investigation of the effect of process parameters on microstructural development in an austenitic stainless steel showed that the impact force associated with collision events is an important process parameter for characterizing microstructural evolution. (C) 1997 Elsevier Science S.A.
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Resumo:
Background: Patients with idiopathic pulmonary fibrosis (IPF) present an important ventilatory (imitation reducing their exercise capacity. Non-invasive ventilatory support has been shown to improve exercise capacity in patients with obstructive diseases; however, its effect on IPF patients remains unknown. Objective: The present study assessed the effect of ventilatory support using proportional, assist ventilation (PAV) on exercise capacity in patients with IPF. Methods: Ten patients (61.2 +/- 9.2 year-old) were submitted to a cardiopulmonary exercise testing, plethysmography and three submaximal. exercise tests (60% of maximum load): without ventilatory support, with continuous positive airway pressure (CPAP) and PAV. Submaximal tests were performed randomly and exercise capacity, cardiovascular and ventilatory response as well as breathlessness subjective perception were evaluated. Lactate plasmatic levels were obtained before and after submaximal. exercise. Results: Our data show that patients presented a limited exercise capacity (9.7 +/- 3.8 mL O(2)/kg/min). Submaximal. test was increased in patients with PAV compared with CPAP and without ventilatory support (respectively, 11.1 +/- 8.8 min, 5.6 +/- 4.7 and 4.5 +/- 3.8 min; p < 0.05). An improved arterial oxygenation and lower subjective perception to effort was also observed in patients with IPF when exercise was performed with PAV (p < 0.05). IPF patients performing submaximal exercise with PAV also presented a lower heart rate during exercise, although systolic and diastolic pressures were not different among submaximal tests. Our results suggest that PAV can increase exercise tolerance and decrease dyspnoea and cardiac effort in patients with idiopathic pulmonary fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present study compared the effects of early short-term with prolonged low-dose corticosteroid therapy in acute lung injury (ALI). In total, 120 BALB/c mice were randomly divided into five groups. In the control group, saline was intratracheally (i.t.) instilled. In the ALI group, mice received Escherichia coli lipopolysaccharide (10 mu g i.t.). ALI animals were further randomised into four subgroups to receive saline (0.1 mL i.v.) or methylprednisolone (2 mg center dot kg(-1) i.v.) at 6 h, 24 h or daily (for 7 days, beginning at day 1). At 1, 3 and 8 weeks, in vivo and in vitro lung mechanics and histology (light and electron microscopy), collagen and elastic fibre content, cytokines in bronchoalveolar lavage fluid and the expression of matrix metalloproteinase (MMP)-9 and -2 were measured. In vivo (static elastance and viscoelastic pressure) and in vitro (tissue elastance and resistance) lung mechanics, alveolar collapse, cell infiltration, collagen and elastic fibre content and the expression of MMP-9 and MMP-2 were increased in ALI at 1 week. Methylprednisolone led to a complete resolution of lung mechanics, avoided fibroelastogenesis and the increase in the expression of MMP-9 and MMP-2 independent of steroid treatment design. Thus, early short-term, low-dose methylprednisolone is as effective as prolonged therapy in acute lung injury.
Resumo:
Ventilation distribution can be assessed by SPECT with Technegas. This study was undertaken in piglets with different degrees of ventilation inhomogeneity to compare PET using (68)Ga-labeled pseudogas or ""Gallgas"" with Technegas. Methods: Twelve piglets were studied in 3 groups: control, lobar obstruction, and diffuse airway obstruction. Two more piglets were assessed for lung volume (functional residual capacity). Results: In controls, SPECT and PET images showed an even distribution of radioactivity. With lobar obstruction, the absence of ventilation of the obstructed lobe was visible with both techniques. In diffuse airway obstruction, SPECT images showed an even distribution of radioactivity, and PET images showed more varied radioactivity over the lung. Conclusion: PET provides detailed ventilation distribution images and a better appreciation of ventilation heterogeneity. Gallgas with PET is a promising new diagnostic tool for the assessment of ventilation distribution.
Resumo:
PURPOSE: To compare mechanical and ethanol epithelial removal with respect to myofibroblast development and haze formation after photorefractive keratectomy (PRK). METHODS: Seventeen rabbits underwent mechanical or ethanol debridement, and the opposite eye of each rabbit served as an unwounded control. In both groups, the epithelium was removed with a spatula and discarded. A -9.00-diopter PRK was performed in each eye. The level of haze in each cornea at 4 weeks was graded at the slit-lamp microscope according to the Fantes scale. Myofibroblast generation was detected with immunocytochemistry for alpha-smooth muscle actin (alpha-SMA) and cells were quantitatively analyzed. RESULTS: No difference was noted between the two groups in alpha-SMA + myofibroblasts 4 weeks after surgery (43.6 +/- 2.0/400X field and 45.7 +/- 4.8/400X field in ethanol and mechanical groups, respectively) (P=.10). A slight difference was noted but did not reach statistical significance with regard to stromal haze between ethanol and mechanical groups (2.0 +/- 0.5 and 2.3 +/- 0.4, respectively, P=.063). The ethanol and mechanical groups were statistically different when compared to controls regarding stromal haze and alpha-SMA+ cells (P <.0001 for all comparisons). CONCLUSIONS:No difference was noted in clinical haze or myofibroblast generation between corneas that had PRK with mechanical,or ethanol epithelial debridement. [J Refract Surg., 2008;24:923-927.]
Resumo:
Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background Changes in the shape of the capnogram may reflect changes in lung physiology. We studied the effect of different ventilation/perfusion ratios (V/Q) induced by positive end-expiratory pressures (PEEP) and lung recruitment on phase III slope (S(III)) of volumetric capnograms. Methods Seven lung-lavaged pigs received volume control ventilation at tidal volumes of 6 ml/kg. After a lung recruitment maneuver, open-lung PEEP (OL-PEEP) was defined at 2 cmH(2)O above the PEEP at the onset of lung collapse as identified by the maximum respiratory compliance during a decremental PEEP trial. Thereafter, six distinct PEEP levels either at OL-PEEP, 4 cmH(2)O above or below this level were applied in a random order, either with or without a prior lung recruitment maneuver. Ventilation-perfusion distribution (using multiple inert gas elimination technique), hemodynamics, blood gases and volumetric capnography data were recorded at the end of each condition (minute 40). Results S(III) showed the lowest value whenever lung recruitment and OL-PEEP were jointly applied and was associated with the lowest dispersion of ventilation and perfusion (Disp(R-E)), the lowest ratio of alveolar dead space to alveolar tidal volume (VD(alv)/VT(alv)) and the lowest difference between arterial and end-tidal pCO(2) (Pa-ETCO(2)). Spearman`s rank correlations between S(III) and Disp(R-E) showed a =0.85 with 95% CI for (Fisher`s Z-transformation) of 0.74-0.91, P < 0.0001. Conclusion In this experimental model of lung injury, changes in the phase III slope of the capnograms were directly correlated with the degree of ventilation/perfusion dispersion.
Resumo:
BACKGROUND: Previous studies have shown positive effects from noninvasive ventilation (NIV) or supplemental oxygen on exercise capacity in patients with COPD. However, the best adjunct for promoting physiologic adaptations to physical training in patients with severe COPD remains to be investigated. METHODS: Twenty-eight patients (mean +/- SD age 68 +/- 7 y) with stable COPD (FEV(1) 34 +/- 9% of predicted) undergoing an exercise training program were randomized to either NIV (n = 14) or supplemental oxygen (n = 14) during group training to maintain peripheral oxygen saturation (S(pO2)) >= 90%. Physical training consisted of treadmill walking (at 70% of maximal speed) 3 times a week, for 6 weeks. Patients were assessed at baseline and after 6 weeks. Assessments included physiological adaptations during incremental exercise testing (ratio of lactate concentration to walk speed, oxygen uptake [(V) over dot(O2)], and dyspnea), exercise tolerance during 6-min walk test, leg fatigue, maximum inspiratory pressure, and health-related quality of life. RESULTS: Two patients in each group dropped out due to COPD exacerbations and lack of exercise program adherence, and 24 completed the training program. Both groups improved 6-min walk distance, symptoms, and health-related quality of life. However, there were significant differences between the NIV and supplemental-oxygen groups in lactate/speed ratio (33% vs -4%), maximum inspiratory pressure (80% vs 23%), 6-min walk distance (122 m vs 47 m), and leg fatigue (25% vs 11%). In addition, changes in S(pO2)/speed, (V) over dot(O2), and dyspnea were greater with NIV than with supplemental-oxygen. CONCLUSIONS: NIV alone is better than supplemental oxygen alone in promoting beneficial physiologic adaptations to physical exercise in patients with severe COPD.
Resumo:
Objective: Experimental study idealized to investigate the mechanical properties of deep flexor tendons of rabbits that underwent the tenotomy followed by tenorrhaphy and early application of therapeutic ultrasound with different intensities, in comparison to tendons submitted to tenorrhaphy only. Material and Method: Forty-four rabbits were divided into four experimental groups according to the ultrasound application. They were all submitted to a section of deep flexor tendon in zone 2 and immobilized with an orthosis maintained throughout the experiment. Group A received ultrasonic treatment with an intensity of 1.4 W/cm(2), group B with 0.6 W/cm(2), both in continuous mode, group C with 0.6 W/cm(2) SATA, in pulsated mode at 50% and group D did not receive any ultrasonic treatment. The ultrasonic frequency employed was 1 MHz. After euthanasia, the tendons were dissected and submitted to the mechanical test of traction and qualitative histological analysis. The evaluated mechanical properties were: maximum force, deformation in maximum force and stiffness. Results: There were no statistically significant differences among the experimental groups. Conclusion: Therapeutic ultrasound did not improve the mechanical properties of the flexor tendons after repair.