853 resultados para Probabilistic decision process model
Resumo:
The organisational decision making environment is complex, and decision makers must deal with uncertainty and ambiguity on a continuous basis. Managing and handling decision problems and implementing a solution, requires an understanding of the complexity of the decision domain to the point where the problem and its complexity, as well as the requirements for supporting decision makers, can be described. Research in the Decision Support Systems domain has been extensive over the last thirty years with an emphasis on the development of further technology and better applications on the one hand, and on the other hand, a social approach focusing on understanding what decision making is about and how developers and users should interact. This research project considers a combined approach that endeavours to understand the thinking behind managers’ decision making, as well as their informational and decisional guidance and decision support requirements. This research utilises a cognitive framework, developed in 1985 by Humphreys and Berkeley that juxtaposes the mental processes and ideas of decision problem definition and problem solution that are developed in tandem through cognitive refinement of the problem, based on the analysis and judgement of the decision maker. The framework facilitates the separation of what is essentially a continuous process, into five distinct levels of abstraction of manager’s thinking, and suggests a structure for the underlying cognitive activities. Alter (2004) argues that decision support provides a richer basis than decision support systems, in both practice and research. The constituent literature on decision support, especially in regard to modern high profile systems, including Business Intelligence and Business analytics, can give the impression that all ‘smart’ organisations utilise decision support and data analytics capabilities for all of their key decision making activities. However this empirical investigation indicates a very different reality.
Resumo:
This work provides a holistic investigation into the realm of feature modeling within software product lines. The work presented identifies limitations and challenges within the current feature modeling approaches. Those limitations include, but not limited to, the dearth of satisfactory cognitive presentation, inconveniency in scalable systems, inflexibility in adapting changes, nonexistence of predictability of models behavior, as well as the lack of probabilistic quantification of model’s implications and decision support for reasoning under uncertainty. The work in this thesis addresses these challenges by proposing a series of solutions. The first solution is the construction of a Bayesian Belief Feature Model, which is a novel modeling approach capable of quantifying the uncertainty measures in model parameters by a means of incorporating probabilistic modeling with a conventional modeling approach. The Bayesian Belief feature model presents a new enhanced feature modeling approach in terms of truth quantification and visual expressiveness. The second solution takes into consideration the unclear support for the reasoning under the uncertainty process, and the challenging constraint satisfaction problem in software product lines. This has been done through the development of a mathematical reasoner, which was designed to satisfy the model constraints by considering probability weight for all involved parameters and quantify the actual implications of the problem constraints. The developed Uncertain Constraint Satisfaction Problem approach has been tested and validated through a set of designated experiments. Profoundly stating, the main contributions of this thesis include the following: • Develop a framework for probabilistic graphical modeling to build the purported Bayesian belief feature model. • Extend the model to enhance visual expressiveness throughout the integration of colour degree variation; in which the colour varies with respect to the predefined probabilistic weights. • Enhance the constraints satisfaction problem by the uncertainty measuring of the parameters truth assumption. • Validate the developed approach against different experimental settings to determine its functionality and performance.
Resumo:
With the evolution of nowadays knowledge-based economies, the labour class becomes more competitive. As a way of getting skills that bring benefits to their careers, university students take advantage of the many opportunities available and go abroad to study. This study develops and empirically tests a structural model that examines the antecedents that influence the decision-making process of an Erasmus student under mobility for studies (EMS) in Aveiro, Coimbra and Porto (2014-2015). Reliability analysis, exploratory factor analysis and linear regressions were used to evaluate the model. Based on a survey with a sample of 872 valid responses, this study has demonstrated that EMS students are also influenced by touristic factors, which gives support to what has recently been approached by other authors. Conclusions and suggestions can be applied by other organizations, mainly Higher Education Institutions in order to attract more EMS students.
Resumo:
The implementation of confidential contracts between a container liner carrier and its customers, because of the Ocean Shipping Reform Act (OSRA) 1998, demands a revision in the methodology applied in the carrier's planning of marketing and sales. The marketing and sales planning process should be more scientific and with a better use of operational research tools considering the selection of the customers under contracts, the duration of the contracts, the freight, and the container imbalances of these contracts are basic factors for the carrier's yield. This work aims to develop a decision support system based on a linear programming model to generate the business plan for a container liner carrier, maximizing the contribution margin of its freight.
Resumo:
The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Ecological niche modelling combines species occurrence points with environmental raster layers in order to obtain models for describing the probabilistic distribution of species. The process to generate an ecological niche model is complex. It requires dealing with a large amount of data, use of different software packages for data conversion, for model generation and for different types of processing and analyses, among other functionalities. A software platform that integrates all requirements under a single and seamless interface would be very helpful for users. Furthermore, since biodiversity modelling is constantly evolving, new requirements are constantly being added in terms of functions, algorithms and data formats. This evolution must be accompanied by any software intended to be used in this area. In this scenario, a Service-Oriented Architecture (SOA) is an appropriate choice for designing such systems. According to SOA best practices and methodologies, the design of a reference business process must be performed prior to the architecture definition. The purpose is to understand the complexities of the process (business process in this context refers to the ecological niche modelling problem) and to design an architecture able to offer a comprehensive solution, called a reference architecture, that can be further detailed when implementing specific systems. This paper presents a reference business process for ecological niche modelling, as part of a major work focused on the definition of a reference architecture based on SOA concepts that will be used to evolve the openModeller software package for species modelling. The basic steps that are performed while developing a model are described, highlighting important aspects, based on the knowledge of modelling experts. In order to illustrate the steps defined for the process, an experiment was developed, modelling the distribution of Ouratea spectabilis (Mart.) Engl. (Ochnaceae) using openModeller. As a consequence of the knowledge gained with this work, many desirable improvements on the modelling software packages have been identified and are presented. Also, a discussion on the potential for large-scale experimentation in ecological niche modelling is provided, highlighting opportunities for research. The results obtained are very important for those involved in the development of modelling tools and systems, for requirement analysis and to provide insight on new features and trends for this category of systems. They can also be very helpful for beginners in modelling research, who can use the process and the experiment example as a guide to this complex activity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This article presents a tool for the allocation analysis of complex systems of water resources, called AcquaNetXL, developed in the form of spreadsheet in which a model of linear optimization and another nonlinear were incorporated. The AcquaNetXL keeps the concepts and attributes of a decision support system. In other words, it straightens out the communication between the user and the computer, facilitates the understanding and the formulation of the problem, the interpretation of the results and it also gives a support in the process of decision making, turning it into a clear and organized process. The performance of the algorithms used for solving the problems of water allocation was satisfactory especially for the linear model.
Resumo:
The objective of this paper is to develop and validate a mechanistic model for the degradation of phenol by the Fenton process. Experiments were performed in semi-batch operation, in which phenol, catechol and hydroquinone concentrations were measured. Using the methodology described in Pontes and Pinto [R.F.F. Pontes, J.M. Pinto, Analysis of integrated kinetic and flow models for anaerobic digesters, Chemical Engineering journal 122 (1-2) (2006) 65-80], a stoichiometric model was first developed, with 53 reactions and 26 compounds, followed by the corresponding kinetic model. Sensitivity analysis was performed to determine the most influential kinetic parameters of the model that were estimated with the obtained experimental results. The adjusted model was used to analyze the impact of the initial concentration and flow rate of reactants on the efficiency of the Fenton process to degrade phenol. Moreover, the model was applied to evaluate the treatment cost of wastewater contaminated with phenol in order to meet environmental standards. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.
Diagnostic errors and repetitive sequential classifications in on-line process control by attributes
Resumo:
The procedure of on-line process control by attributes, known as Taguchi`s on-line process control, consists of inspecting the mth item (a single item) at every m produced items and deciding, at each inspection, whether the fraction of conforming items was reduced or not. If the inspected item is nonconforming, the production is stopped for adjustment. As the inspection system can be subject to diagnosis errors, one develops a probabilistic model that classifies repeatedly the examined item until a conforming or b non-conforming classification is observed. The first event that occurs (a conforming classifications or b non-conforming classifications) determines the final classification of the examined item. Proprieties of an ergodic Markov chain were used to get the expression of average cost of the system of control, which can be optimized by three parameters: the sampling interval of the inspections (m); the number of repeated conforming classifications (a); and the number of repeated non-conforming classifications (b). The optimum design is compared with two alternative approaches: the first one consists of a simple preventive policy. The production system is adjusted at every n produced items (no inspection is performed). The second classifies the examined item repeatedly r (fixed) times and considers it conforming if most classification results are conforming. Results indicate that the current proposal performs better than the procedure that fixes the number of repeated classifications and classifies the examined item as conforming if most classifications were conforming. On the other hand, the preventive policy can be averagely the most economical alternative rather than those ones that require inspection depending on the degree of errors and costs. A numerical example illustrates the proposed procedure. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.