917 resultados para Power Sensitivity Model
Resumo:
Cet article étudie la sensibilité des estimations de certaines variables explicatives de la croissance économique dans des régressions en coupe transversale sur un ensemble de pays. Il applique un modèle modifié de l’analyse de sensibilité de Leamer (1983, 1985). Mes résultats confirment la conclusion de Levine and Renelt (1992), toutefois, je montre que plus de variables sont solidement corrélées à la croissance économique. Entre 1990-2010, je trouve que huit sur vingt cinq variables ont des coefficients significatifs et sont solidement corrélées à la croissance de long terme, notamment, les parts de l’investissement et des dépenses étatiques dans le PIB, la primauté du droit et une variable dichotomique pour les pays subsahariens. Je trouve aussi une preuve empirique solide de l'hypothèse de la convergence conditionnelle, ce qui est cohérent avec le modèle de croissance néoclassique.
Resumo:
Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat.
Resumo:
La leucémie aiguë lymphoblastique (LAL) est le cancer pédiatrique le plus fréquent. Elle est la cause principale de mortalité liée au cancer chez les enfants due à un groupe de patient ne répondant pas au traitement. Les patients peuvent aussi souffrir de plusieurs toxicités associées à un traitement intensif de chimiothérapie. Les études en pharmacogénétique de notre groupe ont montré une corrélation tant individuelle que combinée entre les variants génétiques particuliers d’enzymes dépendantes du folate, particulièrement la dihydrofolate réductase (DHFR) ainsi que la thymidylate synthase (TS), principales cibles du méthotrexate (MTX) et le risque élevé de rechute chez les patients atteints de la LAL. En outre, des variations dans le gène ATF5 impliqué dans la régulation de l’asparagine synthetase (ASNS) sont associées à un risque plus élevé de rechute ou à une toxicité ASNase dépendante chez les patients ayant reçu de l’asparaginase d’E.coli (ASNase). Le but principal de mon projet de thèse est de comprendre davantage d’un point de vue fonctionnel, le rôle de variations génétiques dans la réponse thérapeutique chez les patients atteints de la LAL, en se concentrant sur deux composants majeurs du traitement de la LAL soit le MTX ainsi que l’ASNase. Mon objectif spécifique était d’analyser une association trouvée dans des paramètres cliniques par le biais d’essais de prolifération cellulaire de lignées cellulaires lymphoblastoïdes (LCLs, n=93) et d’un modèle murin de xénogreffe de la LAL. Une variation génétique dans le polymorphisme TS (homozygosité de l’allèle de la répétition triple 3R) ainsi que l’haplotype *1b de DHFR (défini par une combinaison particulière d’allèle dérivé de six sites polymorphiques dans le promoteur majeur et mineur de DHFR) et de leurs effets sur la sensibilité au MTX ont été évalués par le biais d’essais de prolifération cellulaire. Des essais in vitro similaires sur la réponse à l’ASNase de E. Coli ont permis d’évaluer l’effet de la variation T1562C de la région 5’UTR de ATF5 ainsi que des haplotypes particuliers du gène ASNS (définis par deux variations génétiques et arbitrairement appelés haplotype *1). Le modèle murin de xénogreffe ont été utilisé pour évaluer l’effet du génotype 3R3R du gène TS. L’analyse de polymorphismes additionnels dans le gène ASNS a révélé une diversification de l’haplotype *1 en 5 sous-types définis par deux polymorphismes (rs10486009 et rs6971012,) et corrélé avec la sensibilité in vitro à l’ASNase et l’un d’eux (rs10486009) semble particulièrement important dans la réduction de la sensibilité in vitro à l’ASNase, pouvant expliquer une sensibilité réduite de l’haplotype *1 dans des paramètres cliniques. Aucune association entre ATF5 T1562C et des essais de prolifération cellulaire en réponse à ASNase de E.Coli n’a été détectée. Nous n’avons pas détecté une association liée au génotype lors d’analyse in vitro de sensibilité au MTX. Par contre, des résultats in vivo issus de modèle murin de xénogreffe ont montré une relation entre le génotype TS 3R/3R et la résistance de manière dose-dépendante au traitement par MTX. Les résultats obtenus ont permis de fournir une explication concernant un haut risque significatif de rechute rencontré chez les patients au génotype TS 3R/3R et suggèrent que ces patients pourraient recevoir une augmentation de leur dose de MTX. À travers ces expériences, nous avons aussi démontré que les modèles murins de xénogreffe peuvent servir comme outil préclinique afin d’explorer l’option d’un traitement individualisé. En conclusion, la connaissance acquise à travers mon projet de thèse a permis de confirmer et/ou d’identifier quelques variants dans la voix d’action du MTX et de l’ASNase qui pourraient faciliter la mise en place de stratégies d’individualisation de la dose, permettant la sélection d’un traitement optimum ou moduler la thérapie basé sur la génétique individuelle.
Resumo:
The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model's key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
Severe local storms, including tornadoes, damaging hail and wind gusts, frequently occur over the eastern and northeastern states of India during the pre-monsoon season (March-May). Forecasting thunderstorms is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent non-linearity of their dynamics and physics. In this paper, sensitivity experiments are conducted with the WRF-NMM model to test the impact of convective parameterization schemes on simulating severe thunderstorms that occurred over Kolkata on 20 May 2006 and 21 May 2007 and validated the model results with observation. In addition, a simulation without convective parameterization scheme was performed for each case to determine if the model could simulate the convection explicitly. A statistical analysis based on mean absolute error, root mean square error and correlation coefficient is performed for comparisons between the simulated and observed data with different convective schemes. This study shows that the prediction of thunderstorm affected parameters is sensitive to convective schemes. The Grell-Devenyi cloud ensemble convective scheme is well simulated the thunderstorm activities in terms of time, intensity and the region of occurrence of the events as compared to other convective schemes and also explicit scheme
Resumo:
Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’westers’(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region
Resumo:
Weltweit leben mehr als 2 Milliarden Menschen in ländlichen Gebieten. Als Konzept für die elektrische Energieversorgung solcher Gebiete kommen dezentrale elektrische Energieversorgungseinheiten zum Einsatz, die lokal verfügbare erneuerbare Ressourcen nutzen. Stand der Technik bilden Einheiten, die auf PV-Diesel-Batterie System basieren. Die verwendeten Versorgungsskonzepte in Hybridsystemen sind durch den Einsatz von Batterien als Energiespeicher meist wenig zuverlässig und teuer. Diese Energiespeicher sind sehr aufwendig zu überwachen und schwerig zu entsorgen. Den Schwerpunkt dieser Arbeit bildet die Entwicklung eines neuen Hybridsystems mit einem Wasserreservoir als Energiespeicher. Dieses Konzept eignet sich für Bergregionen in Entwicklungsländern wie Nepal, wo z.B. neben der solaren Strahlung kleine Flüsse in großer Anzahl vorhanden sind. Das Hybridsystem verfügt über einen Synchrongenerator, der die Netzgrößen Frequenz und Spannung vorgibt und zusätzlich unterstützen PV und Windkraftanlage die Versorgung. Die Wasserkraftanlage soll den Anteil der erneuerbaren Energienutzung erhöhen. Die Erweiterung des Systems um ein Dieselaggregat soll die Zuverlässigkeit der Versorgung erhöhen. Das Hybridsystem inkl. der Batterien wird modelliert und simuliert. Anschließend werden die Simulations- und Messergebnisse verglichen, um eine Validierung des Modells zu erreichen. Die Regelungsstruktur ist aufgrund der hohen Anzahl an Systemen und Parametern sehr komplex. Sie wird mit dem Simulationstool Matlab/Simulink nachgebildet. Das Verhalten des Gesamtsystems wird unter verschiedene Lasten und unterschiedlichen meteorologischen Gegebenheiten untersucht. Ein weiterer Schwerpunkt dieser Arbeit ist die Entwicklung einer modularen Energiemanagementeinheit, die auf Basis der erneuerbaren Energieversorgung aufgebaut wird. Dabei stellt die Netzfrequenz eine wichtige Eingangsgröße für die Regelung dar. Sie gibt über die Wirkleistungsstatik die Leistungsänderung im Netz wider. Über diese Angabe und die meteorologischen Daten kann eine optimale wirtschaftliche Aufteilung der Energieversorgung berechnet und eine zuverlässige Versorgung gewährleistet werden. Abschließend wurde die entwickelte Energiemanagementeinheit hardwaretechnisch aufgebaut, sowie Sensoren, Anzeige- und Eingabeeinheit in die Hardware integriert. Die Algorithmen werden in einer höheren Programmiersprache umgesetzt. Die Simulationen unter verschiedenen meteorologischen und netztechnischen Gegebenheiten mit dem entwickelten Model eines Hybridsystems für die elektrische Energieversorgung haben gezeigt, dass das verwendete Konzept mit einem Wasserreservoir als Energiespeicher ökologisch und ökonomisch eine geeignete Lösung für Entwicklungsländer sein kann. Die hardwaretechnische Umsetzung des entwickelten Modells einer Energiemanagementeinheit hat seine sichere Funktion bei der praktischen Anwendung in einem Hybridsystem bestätigen können.
Resumo:
The visual recognition of complex movements and actions is crucial for communication and survival in many species. Remarkable sensitivity and robustness of biological motion perception have been demonstrated in psychophysical experiments. In recent years, neurons and cortical areas involved in action recognition have been identified in neurophysiological and imaging studies. However, the detailed neural mechanisms that underlie the recognition of such complex movement patterns remain largely unknown. This paper reviews the experimental results and summarizes them in terms of a biologically plausible neural model. The model is based on the key assumption that action recognition is based on learned prototypical patterns and exploits information from the ventral and the dorsal pathway. The model makes specific predictions that motivate new experiments.
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system
Resumo:
Introducción: Para millones de parejas alrededor del mundo, la incapacidad de tener hijos es una tragedia personal. Por ello, no es de extrañar que la demanda de técnicas de reproducción asistida (TRA), así como la identificación de las variables que permitan discernir sobre el éxito de estos tratamientos sean crecientes a nivel mundial. Metodología: Estudio observacional, de cohorte retrospectiva. Incluyó las historias clínicas de pacientes de la Unidad de Fertilidad del Country de Bogotá (Conceptum) entre el 20 de enero de 2005 al 15 de diciembre de 2010. El objetivo fue establecer si existe diferencia en los valores séricos de progesterona de las pacientes embarazadas y las que no, así como la identificación de las variables asociadas a éxito del embarazo en pacientes tratadas con técnicas de reproducción asistida. Resultados: Edad promedio 35,7 años (25-45años). Se analizaron 352 ciclos de pacientes, 131 embarazadas (110 partos, 18 abortos y 2 ectópicos). Las variables que en el análisis multivariado tenían mayor asociación con la variable desenlace fueron: niveles séricos de progesterona, edad de la paciente y número de embriones tipo I/II. La capacidad discriminatoria del modelo final se evaluó por medio del área bajo la curva ROC la cual fue de 0,714. La sensibilidad del modelo fue del 33,3% con una especificidad del 84,3%. Discusión: Los niveles séricos de progesterona difieren en las pacientes embarazadas de las que no lo están. Se requiere de un análisis más a fondo para determinar si esta variable se asocia con la viabilidad del embarazo.
Resumo:
The main objective pursued in this thesis targets the development and systematization of a methodology that allows addressing management problems in the dynamic operation of Urban Wastewater Systems. The proposed methodology will suggest operational strategies that can improve the overall performance of the system under certain problematic situations through a model-based approach. The proposed methodology has three main steps: The first step includes the characterization and modeling of the case-study, the definition of scenarios, the evaluation criteria and the operational settings that can be manipulated to improve the system’s performance. In the second step, Monte Carlo simulations are launched to evaluate how the system performs for a wide range of operational settings combinations, and a global sensitivity analysis is conducted to rank the most influential operational settings. Finally, the third step consists on a screening methodology applying a multi-criteria analysis to select the best combinations of operational settings.
Resumo:
Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus) conservation) and delayed harvest areas (created for American marten (Martes americana atrata) conservation). This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options that specify deferment and timing of harvest for large blocks helped ensure the stable presence of an intact mature forest matrix over time. The management scenario that focused on maintaining compositional targets best supported biodiversity objectives by providing the composition patterns required by the 13 focal species, but this scenario may be improved by adding some broad-scale spatial objectives to better maintain large blocks of interior forest habitat through time.