914 resultados para Powder metallurgy. Nickel. Alloy carrier. Silicon carbide and silicon nitride
Resumo:
Tibolone polymorphic forms I (monoclinic) and II (triclinic) have been prepared by recrystallization from acetone and toluene, respectively, and characterized by different techniques sensitive to changes in solid state, such as polarized light microscopy, X-ray powder diffractometry, thermal analysis (TG/DTG/DSC), and vibrational spectroscopy (FTIR and Raman microscopy). The nonisothermal decomposition kinetics of the obtained polymorphs were studied using thermogravimetry. The activation energies were calculated through the Ozawa`s method for the first step of decomposition, the triclinic form showed a lower E (a) (91 kJ mol(-1)) than the monoclinic one (95 kJ mol(-1)). Furthermore, Raman microscopy and DSC at low heating rates were used to identify and follow the thermal decomposition of the triclinic form, showing the existence of three thermal events before the first mass loss.
Resumo:
Denna studie undersöker gudinnan Hathors funktion i forna Egypten med utgångspunkt från metallurgiverksamheten som Hathor var beskyddare över. Studien undersöker vad för behov som uppstår i metallurgikontexten och hur denna kan ha påverkat och speglats i förställningar kring gudinnan Hathors funktion i forna Egypten. Studien stödjer sig på William Padens teori om religiösa Världar för att därigenom belysa hur behov i en specifik kontext kan spelgas i den Religiösa Världen. Undersökningen baseras på tolkningar av en rad olika forskningsrapporter. Dels etnografiska dokumentationer om metallurgikontexter ifrån Afrika söder om Sahara, arkeologiska utgrävningar från gruvområdet i Timna i Sinai och forskares interpretationer kring gudinnan Hathors funktion i forna Egypten. Ifrån metallurgiverksamheten studerades dels hur den äldre teknologin fungerade och hur den inverkade på religiösa föreställningar och den auktoritära strukturen i Afrika. Därtill vad för sorts belägg som finns för metallurgiverksamhet i Timna i Sinai och hur gudinnan Hathors kults närvaro i gruvområdet kom till uttryck. Dessutom studeras forskares interpretationer som rör gudinnan Hathors kults funktion, auktoritära struktur och kultens förhållande till konungen i forna Egypten. Dessa uppgifter analyserades därefter och studien visar starka indikationer på att gudinnan Hathor skapades och användes i syfte att gagna en begränsad grupps intresse i forna Egypten. Att gudinnan Hathors funktion och de offentliga festivalerna var till för att upprätthålla en auktoritär struktur och vidmakthålla smidessläktets och prästerskapets makt.
Resumo:
The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas
Resumo:
The present work has as objective the development of ceramic pigments based in iron oxides and cobalt through the polymeric precursor method, as well as study their characteristics and properties using methods of physical, chemical, morphological and optical characterizations.In this work was used iron nitrate, and cobalt citrate as precursor and nanometer silica as a matrix. The synthesis was based on dissolving the citric acid as complexing agent, addition of metal oxides, such as chromophores ions and polymerization with ethylene glycol. The powder obtained has undergone pre-ignition, breakdown and thermal treatments at different calcination temperatures (700 °C, 800 °C, 900 °C, 1000 °C and 1100 °C). Thermogravimetric analyzes were performed (BT) and Differential Thermal Analysis (DTA), in order to evaluate the term decomposition of samples, beyond characterization by techniques such as BET, which classified as microporous materials samples calcined at 700 ° C, 800 º C and 900 º C and non-porous when annealed at 1000 ° C and 1100 º C, X-ray diffraction (XRD), which identified the formation of two crystalline phases, the Cobalt Ferrite (CoFe2O4) and Cristobalite (SiO2), Scanning Electron Microscopy (SEM) revealed the formation of agglomerates of particles slightly rounded;and Analysis of Colorimetry, temperature of 700 °C, 800 °C and 900 °C showed a brown color and 1000 °C and 1100 °C violet
Resumo:
The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts
Resumo:
The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts
Resumo:
At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process
Resumo:
This study aimed to evaluate the effect of food type on growth performance and water quality of angelfish juvenile. A total of 168 angelfish Pterophyllum scalare var. marble (w(i) = 151.3 +/- 37.9 mg e l(i) = 2.2 +/- 0.07 cm) were distributed in 12 aquaria 14 L (1.0 fish L(-1)). The experiment was conducted in a complete randomized design with three treatments and four replicates. Foods evaluated were: Artemia nauplii, commercial flakes diet and commercial powder diet. Fish weight and length were recorded in the beginning and the end of 60 experimental days. Water temperature, dissolved oxygen, pH and total ammonia were monitored during experiment. Best averages of final weight, final length, weight gain and condition factor were observed on fish fed powder diet. Specific growth rate, weight uniformity and survival were not influenced (p > 0.05) by food type. Just on length uniformity fish fed Artemia showed better averages than fish fed flakes diet and powder diet. Foods evaluated did not influenced (p > 0.05) on water quality parameters. In conclusion, for juvenile angelfish, the food type influences growth performance without affect water quality parameters. Powder diet resulted in better growth performance.
Resumo:
A partir de ensaios com dosagens crescentes, foi avaliado o efeito do pó da raiz de duas espécies de timbó (Derris urucu e D. nicou) sobre populações de larvas de duas linhagens de Musca domestica L., provenientes de duas localidades do Estado de São Paulo, Jaboticabal (Jab) e Brodósqui (Bro). Para obtenção das doses letais foram utilizados ajustes de regressão de acordo com o modelo logístico. D. urucu foi mais eficiente que D. nicou no controle das duas linhagens, sendo necessário mais que o dobro da quantidade de D. nicou para se obter os mesmos efeitos causados com D. urucu. Foi demonstrada a existência de especificidade de ação dos timbós nas linhagens de moscas. D, urucu foi mais eficiente no controle da linhagem Bro, enquanto que D. nicou controlou maior número de indivíduos da linhagem Jab.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho teve como objetivo avaliar o efeito do volume de calda aplicado por um turbopulverizador sobre a deposição e a cobertura em folhas, ramos e frutos de citros. A pulverização foi realizada com um pulverizador tratorizado Arbus 2000/Valência em pomar de laranja 'Natal', com porte médio de 4,0 m, sendo avaliados seis volumes de calda (50; 70; 85; 100; 150 e 200% do volume-padrão utilizado pelo produtor, de 28 L planta-1). Após a pulverização de plantas uniformes com calda contendo cobre e o traçador fluorescente Poliglow 830 YLSS, amostras foram coletadas em nove setores da planta, sendo a avaliação da deposição feita usando-se análise do íon cobre por espectrofotômetro de absorção atômica, e a da cobertura, por meio de imagens digitalizadas analisadas pelo programa para computador IDRISI. A análise estatística mostrou que, na avaliação da cobertura e deposição em citros, a utilização de frutos como estrutura de amostragem tendeu a evidenciar melhor o efeito dos tratamentos. Tanto a deposição quanto a cobertura tenderam a ser maiores nos setores frontal e saia da planta. Tanto a deposição quanto a cobertura não foram prejudicadas pela utilização do volume de 70% (19,6 L planta-1), indicando que tal volume pode substituir o volume de 100% (28 L planta-1) sem prejuízos ao controle de pragas.
Resumo:
In this work we deposit via non-reactive magnetron sputtering of radio-frequency nanofilmes of nitreto of aluminum(AlN). The nanofilms aluminum nitride are semiconductors materials with high thermal conductivity, high melting point, piezoelectricity and wide band gap (6, 2 eV) with hexagonal wurtzite crystal structure, belonging to the group of new materials called III-V nitrides in which together with the gallium nitride and indium nitride have attracted much interest because they have physical and chemical properties relevant to new technological applications, mainly in microelectronic and optoelectronic devices. Three groups were deposited with thicknesses nanofilms time dependent on two substrates (glass and silicon) at a temperature of 25 ° C. The nanofilms AlN were characterized using three techniques, X-ray diffraction, Raman spectroscopy and atomic force microscopy (AFM), examined the morphology of these. Through the analysis of X-rays get the thickness of each sample with its corresponding deposition rate. The analysis of X-rays also revealed that nanofilms are not crystalline, showing the amorphous character of the samples. The results obtained by the technique, atomic force microscopy (AFM) agree with those obtained using the technique of X-rays. Characterization by Raman spectroscopy revealed the existence of active modes characteristic of AlN in the samples
Resumo:
The mechanical properties of metals with bcc structure, such as niobium and its alloys, have changed significantly with the introduction of heavy interstitial elements. These interstitial elements (nitrogen, for example), present in the alloy, occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. This article presents the effect of nitrogen on the anelastic properties of Nb-1.0 wt% Zr alloys, measured by means of mechanical spectroscopy using a torsion pendulum. The results showed complex anelastic relaxation structures, which were resolved into their constituent peaks, representing each relaxation process. These processes are due to stress-induced ordering of the interstitial elements around the niobium and zirconium of the alloy.
Resumo:
The industry's interest in having a greater control of the deformations caused by welding is due to the geometric and dimensional tolerances been more and more precise in the project specifications, motivating the manufacturing engineering to develop stable processes and to ensure routine production. Aiming at it, the main goal of this present work is to analyze how much routine situations used in automatic aluminum welding can influence on the angular deformations of this material. Using the alloy AA 5052 H34, and the automatic welding in pulsed GMAW process, three types of weaving were applied throughout the length of the weld, in butt joints assembled without groove and with 60 degrees single-V-groove, arranged transversely as well as longitudinally to the rolling direction of the plate. The measurement of the deformations was made by a three-dimensional equipment, before and after the welding, in three distinct regions in the specimens. The profile of the weld bead was the main factor for the different types of deformations found, as revealed by macrographical analysis. The 60 degrees single-V-groove had higher amplitudes of deformations as the joint without groove. The torch oscillation wasn't a variable of statistically significant influence on this amplitudes.