795 resultados para Planning decision support systems
Resumo:
Modelling business processes for analysis or redesign usually requires the collaboration of many stakeholders. These stakeholders may be spread across locations or even companies, making co-located collaboration costly and difficult to organize. Modern process modelling technologies support remote collaboration but lack support for visual cues used in co-located collaboration. Previously we presented a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. However, the added complexity of having to navigate a virtual environment and using an avatar for communication made the tool difficult to use for novice users. We now present an evolved version of the technology that addresses these issues by providing natural user interfaces for non-verbal communication, navigation and model manipulation.
Resumo:
A demo video showing the BPMVM prototype using several natural user interfaces, such as multi-touch input, full-body tracking and virtual reality.
Resumo:
The representation of business process models has been a continuing research topic for many years now. However, many process model representations have not developed beyond minimally interactive 2D icon-based representations of directed graphs and networks, with little or no annotation for information overlays. In addition, very few of these representations have undergone a thorough analysis or design process with reference to psychological theories on data and process visualization. This dearth of visualization research, we believe, has led to problems with BPM uptake in some organizations, as the representations can be difficult for stakeholders to understand, and thus remains an open research question for the BPM community. In addition, business analysts and process modeling experts themselves need visual representations that are able to assist with key BPM life cycle tasks in the process of generating optimal solutions. With the rise of desktop computers and commodity mobile devices capable of supporting rich interactive 3D environments, we believe that much of the research performed in computer human interaction, virtual reality, games and interactive entertainment have much potential in areas of BPM; to engage, provide insight, and to promote collaboration amongst analysts and stakeholders alike. We believe this is a timely topic, with research emerging in a number of places around the globe, relevant to this workshop. This is the second TAProViz workshop being run at BPM. The intention this year is to consolidate on the results of last year's successful workshop by further developing this important topic, identifying the key research topics of interest to the BPM visualization community.
Resumo:
This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.
Resumo:
A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.
Resumo:
This thesis presents a sequential pattern based model (PMM) to detect news topics from a popular microblogging platform, Twitter. PMM captures key topics and measures their importance using pattern properties and Twitter characteristics. This study shows that PMM outperforms traditional term-based models, and can potentially be implemented as a decision support system. The research contributes to news detection and addresses the challenging issue of extracting information from short and noisy text.
Resumo:
In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.
Resumo:
A novel intelligent online demand management system is discussed in this chapter for peak load management in low voltage residential distribution networks based on the smart grid concept. The discussed system also regulates the network voltage, balances the power in three phases and coordinates the energy storage within the network. This method uses low cost controllers, with two-way communication interfaces, installed in costumers’ premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by a MATLAB-based simulation which includes detailed modeling of residential loads and the network.
Resumo:
Aims Pathology notification for a Cancer Registry is regarded as the most valid information for the confirmation of a diagnosis of cancer. In view of the importance of pathology data, an automatic medical text analysis system (Medtex) is being developed to perform electronic Cancer Registry data extraction and coding of important clinical information embedded within pathology reports. Methods The system automatically scans HL7 messages received from a Queensland pathology information system and analyses the reports for terms and concepts relevant to a cancer notification. A multitude of data items for cancer notification such as primary site, histological type, stage, and other synoptic data are classified by the system. The underlying extraction and classification technology is based on SNOMED CT1 2. The Queensland Cancer Registry business rules3 and International Classification of Diseases – Oncology – Version 34 have been incorporated. Results The cancer notification services show that the classification of notifiable reports can be achieved with sensitivities of 98% and specificities of 96%5, while the coding of cancer notification items such as basis of diagnosis, histological type and grade, primary site and laterality can be extracted with an overall accuracy of 80%6. In the case of lung cancer staging, the automated stages produced were accurate enough for the purposes of population level research and indicative staging prior to multi-disciplinary team meetings2 7. Medtex also allows for detailed tumour stream synoptic reporting8. Conclusions Medtex demonstrates how medical free-text processing could enable the automation of some Cancer Registry processes. Over 70% of Cancer Registry coding resources are devoted to information acquisition. The development of a clinical decision support system to unlock information from medical free-text could significantly reduce costs arising from duplicated processes and enable improved decision support, enhancing efficiency and timeliness of cancer information for Cancer Registries.
Resumo:
This paper presents a novel method to rank map hypotheses by the quality of localization they afford. The highest ranked hypothesis at any moment becomes the active representation that is used to guide the robot to its goal location. A single static representation is insufficient for navigation in dynamic environments where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners. In our approach we simultaneously rank multiple map hypotheses by the influence that localization in each of them has on locally accurate odometry. This is done online for the current locally accurate window by formulating a factor graph of odometry relaxed by localization constraints. Comparison of the resulting perturbed odometry of each hypothesis with the original odometry yields a score that can be used to rank map hypotheses by their utility. We deploy the proposed approach on a real robot navigating a structurally noisy office environment. The configuration of the environment is physically altered outside the robots sensory horizon during navigation tasks to demonstrate the proposed approach of hypothesis selection.
Resumo:
Maintenance decisions for large-scale asset systems are often beyond an asset manager's capacity to handle. The presence of a number of possibly conflicting decision criteria, the large number of possible maintenance policies, and the reality of budget constraints often produce complex problems, where the underlying trade-offs are not apparent to the asset manager. This paper presents the decision support tool "JOB" (Justification and Optimisation of Budgets), which has been designed to help asset managers of large systems assess, select, interpret and optimise the effects of their maintenance policies in the presence of limited budgets. This decision support capability is realized through an efficient, scalable backtracking- based algorithm for the optimisation of maintenance policies, while enabling the user to view a number of solutions near this optimum and explore tradeoffs with other decision criteria. To assist the asset manager in selecting between various policies, JOB also provides the capability of Multiple Criteria Decision Making. In this paper, the JOB tool is presented and its applicability for the maintenance of a complex power plant system.
Resumo:
Rating systems are used by many websites, which allow customers to rate available items according to their own experience. Subsequently, reputation models are used to aggregate available ratings in order to generate reputation scores for items. A problem with current reputation models is that they provide solutions to enhance accuracy of sparse datasets not thinking of their models performance over dense datasets. In this paper, we propose a novel reputation model to generate more accurate reputation scores for items using any dataset; whether it is dense or sparse. Our proposed model is described as a weighted average method, where the weights are generated using the normal distribution. Experiments show promising results for the proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Many websites offer the opportunity for customers to rate items and then use customers' ratings to generate items reputation, which can be used later by other users for decision making purposes. The aggregated value of the ratings per item represents the reputation of this item. The accuracy of the reputation scores is important as it is used to rank items. Most of the aggregation methods didn't consider the frequency of distinct ratings and they didn't test how accurate their reputation scores over different datasets with different sparsity. In this work we propose a new aggregation method which can be described as a weighted average, where weights are generated using the normal distribution. The evaluation result shows that the proposed method outperforms state-of-the-art methods over different sparsity datasets.
Resumo:
Reputation systems are employed to provide users with advice on the quality of items on the Web, based on the aggregated value of user-based ratings. Recommender systems are used online to suggest items to users according to the users, expressed preferences. Yet, recommender systems will endorse an item regardless of its reputation value. In this paper, we report the incorporation of reputation models into recommender systems to enhance the accuracy of recommendations. The proposed method separates the implementation of recommender and reputation systems for generality. Our experiment showed that the proposed method could enhance the accuracy of existing recommender systems.
Resumo:
We examine enterprise social network usage data obtained from a community of store managers in a leading Australian retail organization, over a period of fifteen months. Our interest in examining this data is in spatial preferences by the network users, that is, to ascertain who is communicating with whom and where. We offer several contrasting theoretical perspectives for spatial preference patterns and examine these against data collected from over 12,000 messages exchanged between 530 managers in 897 stores. Our findings show that interactions can generally be characterized by individual preferences for local communication but also that two different user communities exist – locals and globals. We develop empirical profiles for these social network user communities and outline implications for theories on spatial influences on communication behaviours on enterprise social networks.