913 resultados para PHOTOVOLTAIC CURRENTS
Resumo:
High-volume capacitance is required to buffer the power difference between the input and output ports in single-phase grid-connected photovoltaic inverters, which become an obstacle to high system efficiency and long device lifetime. Furthermore, total harmonic distortion becomes serious when the system runs into low power level. In this study, a comprehensive analysis is introduced for two-stage topology with the consideration of active power, DC-link (DCL) voltage, ripple and capacitance. This study proposed a comprehensive DCL voltage control strategy to minimise the DCL capacitance while maintaining a normal system operation. Furthermore, the proposed control strategy is flexible to be integrated with the pulse-skipping control that significantly improves the power quality at light power conditions. Since the proposed control strategy needs to vary DCL voltage, an active protection scheme is also introduced to prevent any voltage violation across the DCL. The proposed control strategy is evaluated by both simulation and experiments, whose results confirm the system effectiveness.
Resumo:
Generation systems, using renewable sources, are becoming increasingly popular due to the need for increased use of electricity. Currently, renewables sources have a role to cooperate with conventional generation, due to the system limitation in delivering the required power, the need for reduction of unwanted effects from sources that use fossil fuels (pollution) and the difficulty of building new transmission and/or distribution lines. This cooperation takes place through distributed generation. Therefore, this work proposes a control strategy for the interconnection of a PV (Photovoltaic) system generation distributed with a three-phase power grid through a connection filter the type LCL. The compensation of power quality at point of common coupling (PCC) is performed ensuring that the mains supply or consume only active power and that his currents have low distorcion. Unlike traditional techniques which require schemes for harmonic detection, the technique performs the harmonic compensation without the use of this schemes, controlling the output currents of the system in an indirect way. So that there is effective control of the DC (Direct Current) bus voltage is used the robust controller mode dual DSMPI (Dual-Sliding Mode-Proportional Integral), that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. For control of current is used to repetitive control strategy, which are used double sequence controllers (DSC) tuned to the fundamental component, the fifth and seventh harmonic. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a SRF-PLL (Synchronous Reference Frame Phase-Locked-Loop). In order to obtain the maximum power from the PV array is used a MPPT (Maximum Power Point Tracking) algorithm without the need for adding sensors. Experimental results are presented to demonstrate the effectiveness of the proposed control system.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum–classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.
Resumo:
Purpose: Activation of the transient receptor potential channels, TRPC6, TRPM4, and TRPP1 (PKD2), has been shown to contribute to the myogenic constriction of cerebral arteries. In the present study we sought to determine the potential role of various mechanosensitive TRP channels to myogenic signaling in arterioles of the rat retina.
Methods: Rat retinal arterioles were isolated for RT-PCR, Fura-2 Ca2+ microfluorimetry, patch-clamp electrophysiology, and pressure myography studies. In some experiments, confocal immunolabeling of wholemount preparations was used to examine the localization of specific mechanosensitive TRP channels in retinal vascular smooth muscle cells (VSMCs).
Results: Reverse transcription-polymerase chain reaction analysis demonstrated mRNA expression for TRPC1, M7, V1, V2, V4, and P1, but not TRPC6 or M4, in isolated retinal arterioles. Immunolabeling revealed plasma membrane, cytosolic and nuclear expression of TRPC1, M7, V1, V2, V4, and P1 in retinal VSMCs. Hypoosmotic stretch-induced Ca2+ influx in retinal VSMCs was reversed by the TRPV2 inhibitor tranilast and the nonselective TRPP1/V2 antagonist amiloride. Inhibitors of TRPC1, M7, V1, and V4 had no effect. Hypoosmotic stretch-activated cation currents were similar in Na+ and Cs+ containing solutions suggesting no contribution by TRPP1 channels. Direct plasma membrane stretch triggered cation current activity that was blocked by tranilast and specific TRPV2 pore-blocking antibodies and mimicked by the TRPV2 activator, Δ9-tetrahydrocannabinol. Preincubation of retinal arterioles with TRPV2 blocking antibodies prevented the development of myogenic tone.
Conclusions: Our results suggest that retinal VSMCs express a range of mechanosensitive TRP channels, but only TRPV2 appears to contribute to myogenic signaling in this vascular bed.
Resumo:
In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.
Resumo:
In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.
Resumo:
The fishing sector has been suffering a strong setback, with reduction in fishing stocks and more recently with the reduction of the fishing fleet. One of the most important factors for this decrease, is related to the continuous difficulty to find fish with quality and quantity, allowing the sector work constantly all year long. However other factors are affecting negatively the fishing sector, in particular the huge maintenance costs of the ships and the high diary costs that are necessary for daily work of each vessel. One of the main costs associated with daily work, is the fuel consumption. As an example, one boat with 30 meters working around 17 hours every day, consumes 2500 liters of fuel/day. This value is very high taking into account the productivity of the sector. Supporting this premise was developed a project with the aim of reducing fuel consumption in fishing vessels. The project calls “ShipTrack” and aims the use of forecasts of ocean currents in the routes of the ships. The objective involves the use of ocean currents in favor, and avoiding ocean currents against, taking into account the course of the ship, in order to reduce fuel consumption and increase the ship speed. The methodology used underwent the creation of specific Software, in order to optimize routes, taking into account the forecasts of the ocean currents. These forecasts are performed using numerical modelling, methodology that become more and more important in all communities, because through the modeling, it can be analyzed, verified and predicted important phenomena to all the terrestrial ecosystem. The objective was the creation of Software, however its development was not completed, so it was necessary a new approach in order to verify the influence of the ocean currents in the navigation of the fishing ship "Cruz de Malta". In this new approach, and during the various ship routes it was gathering a constant information about the instant speed, instantaneous fuel consumption, the state of the ocean currents along the course of the ship, among other factors. After 4 sea travels and many routes analyzed, it was possible to verify the influence of the ocean currents in the Ship speed and in fuel consumption. For example, in many stages of the sea travels it was possible to verify an increase in speed in zones where the ocean currents are in favor to the ships movements. This incorporation of new data inside the fishing industry, was seen positively by his players, which encourages new developments in this industry.
Resumo:
We exploit TiO2 surface functionalization as a tool to induce the crystallization process of CH3NH3PbI3xClx perovskite thin films resulting in a reduction of the degree of orientation of the (110) crystallographic planes. Notably, the variation of the film crystalline orientational order does not affect the photovoltaic performances of the perovskite-based devices, whose efficiency remains mostly unchanged. Our findings suggest that other factors are more significant in determining the device efficiency, such as the non-homogenous coverage of the TiO2 surface causing charge recombination at the organic/TiO2 interface, defect distribution on the perovskite bulk and at the interfaces, and transport in the organic or TiO2 layer. This observation represents a step towards the comprehension of the perovskite film peculiarities influencing the photovoltaic efficiency for high performance devices.
Resumo:
Interaction of ocean waves, currents and sea bed roughness is a complicated phenomena in fluid dynamic. This paper will describe the governing equations of motions of this phenomena in viscous and nonviscous conditions as well as study and analysis the experimental results of sets of physical models on waves, currents and artificial roughness, and consists of three parts: First, by establishing some typical patterns of roughness, the effects of sea bed roughness on a uniform current has been studied, as well as the manning coefficient of each type is reviewed to find the critical situation due to different arrangement. Second, the effect of roughness on wave parameters changes, such as wave height, wave length, and wave dispersion equations have been studied, third, superimposing, the waves + current + roughness patterns established in a flume, equipped with waves + currents generator, in this stage different analysis has been done to find the governing dimensionless numbers, and present the numbers to define the contortions and formulations of this phenomena. First step of the model is verified by the so called Chinese method, and the Second step by the Kamphius (1975), and third step by the van Rijn (1990) , and Brevik and Ass ( 1980), and in all cases reasonable agreements have been obtained. Finally new dimensionless parameters presented for this complicated phenomena.
Resumo:
Solar photovoltaic technology is one of the renewable technologies, which has a potential to shape a clean, reliable, scalable and affordable electricity system for the future. This article provides a comprehensive review of solar photovoltaic technology in terms of photovoltaic materials efficiency and globally leading countries. Based on past years review and photovoltaic installations in the year 2014, the major five leading countries identified are China, Japan, USA, Germany and UK. These five countries altogether accounted for 80% of photovoltaic installations in 2014. The article also discusses the driving policies, funding and Research and Development activities: to gauge the reasons behind the success of the leading countries. Finally, this article reviews the photovoltaic cost analysis in terms of the photovoltaic module cost, balance of system cost and project cost with the help of listed 98 globally installed projects.