788 resultados para Ovine mastitis
Resumo:
A Chlamydophila abortus, anteriormente conhecida como Chlamydia psittaci sovovar 1, é uma bactéria Gram negativa, intracelular obrigatória. Esse micro-organismo é frequentemente encontrado em distúrbios reprodutivos em ovinos, bovinos e caprinos, sendo o aborto epizoótico dos bovinos e o aborto enzoótico dos ovinos e caprinos as manifestações mais importantes. Considerando-se o pouco material literário a respeito da clamidofilose no Brasil, a pesquisa teve como objetivo determinar a presença de anticorpos fixadores de complemento anti-Chlamydophila abortus, correlacionando os resultados obtidos com achados no exame clínico e histórico dos animais, além de alterações nos índices zootécnicos, em especial na esfera reprodutiva, tais como alto índice de repetição de cio, número elevado de abortamentos, elevado número de natimortos, entre outros. Foram testadas para prova de fixação do complemento 220 amostras de soro de ovinos, de 26 propriedades, distribuídas em 19 municípios, com relato de manifestação reprodutiva, obtendo-se 19,55% (43/220) de testes positivos para Chlamydophila abortus, com ocorrência de foco constatada de 61,53%. No geral, a titulação de anticorpos encontrada foi baixa, com título não superior a 64. A frequência de manifestação reprodutiva mais observada foi o aborto, representando 65,12% (28/43) do número total de animais soropositivos, seguido de repetição de cio juntamente com nascimento de cordeiro fraco, com frequência de 6,98% (3/ 43) e, por fim, morte neonatal com 4,65% (2/43), sendo que não houve associação significativa entre animais que foram positivos ao teste e a esses fatores.
Resumo:
The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.
Resumo:
Transmissible spongiform encephalopathies (TSE) are neurodegenerative diseases caused by the conversion of the host-encoded cellular protein (PrPC) to a disease-associated isoform (PrPSc). The agent responsible for prion diseases may exist as different strains with specific biological and biochemical properties. According to the protein-only hypothesis, prion strain diversity is enciphered in PrPSc conformation. Molecular strain typing methods are based on the electrophoretic mobility of protease resistant core of PrPSc, on the susceptibility to protease digestion, on the glycosylation profile of PrPres and on the conformational stability of PrPSc. In this study a new conformational stability assay was developed based on the differential solubility of PrPC and PrPSc: CSSA (conformational stability and solubility assay). The conformational stability assay was performed by measuring PrPSc solubility in homogenates treated with increasing concentrations of GdnHCl, in the absence of proteinase K. Indeed, dose-response curves allowed estimation of the concentration of GdnHCl able to solubilise 50% of PrPSc. The results showed that this method is valuable for the biochemical typing of strains in bank voles and it is also a promising tool for molecular analysis of natural prion isolates. CSSA also revealed strain-specific PrPSc conformational stabilities of ovine natural isolates so that this feature, combined with the N-terminal PrPSc cleavage, allowed differentiation of classical scrapie, including CH1641-like, from natural goat BSE and experimental sheep BSE. In view of the implications concerning strain similarity between animal and human TSEs, the physico-chemical properties of the Nor98 with two human prion diseases (VPSPr and GSS) were compared in order to investigate the extent of the similarity between animal and human prion strains. The results showed an unexpected heterogeneity of the molecular features among human and sheep TSEs associated with internal PrPres fragments with the possible exception of Nor98 and a case of GSS P102L. These similarities and differences need further investigation by N- and C-terminal sequencing and biological characterization.
Resumo:
The thesis identify CNV structural variants as possible markers for genomic selection and identify QTL regions for Fatty Acid Content in the Italian Brown Swiss population. Additionally it maps the QTL for mastitis resistance in the Valdostana Red Pied cattle.
Resumo:
ABSTRACT : INTRODUCTION : V2-receptor (V2R) stimulation potentially aggravates sepsis-induced vasodilation, fluid accumulation and microvascular thrombosis. Therefore, the present study was performed to determine the effects of a first-line therapy with the selective V2R-antagonist (Propionyl1-D-Tyr(Et)2-Val4-Abu6-Arg8,9)-Vasopressin on cardiopulmonary hemodynamics and organ function vs. the mixed V1aR/V2R-agonist arginine vasopressin (AVP) or placebo in an established ovine model of septic shock. METHODS : After the onset of septic shock, chronically instrumented sheep were randomly assigned to receive first-line treatment with the selective V2R-antagonist (1 g/kg per hour), AVP (0.05 g/kg per hour), or normal saline (placebo, each n = 7). In all groups, open-label norepinephrine was additionally titrated up to 1 g/kg per minute to maintain mean arterial pressure at 70 ± 5 mmHg, if necessary. RESULTS : Compared to AVP- and placebo-treated animals, the selective V2R-antagonist stabilized cardiopulmonary hemodynamics (mean arterial and pulmonary artery pressure, cardiac index) as effectively and increased intravascular volume as suggested by higher cardiac filling pressures. Furthermore, left ventricular stroke work index was higher in the V2R-antagonist group than in the AVP group. Notably, metabolic (pH, base excess, lactate concentrations), liver (transaminases, bilirubin) and renal (creatinine and blood urea nitrogen plasma levels, urinary output, creatinine clearance) dysfunctions were attenuated by the V2R-antagonist when compared with AVP and placebo. The onset of septic shock was associated with an increase in AVP plasma levels as compared to baseline in all groups. Whereas AVP plasma levels remained constant in the placebo group, infusion of AVP increased AVP plasma levels up to 149 ± 21 pg/mL. Notably, treatment with the selective V2R-antagonist led to a significant decrease of AVP plasma levels as compared to shock time (P < 0.001) and to both other groups (P < 0.05 vs. placebo; P < 0.001 vs. AVP). Immunohistochemical analyses of lung tissue revealed higher hemeoxygenase-1 (vs. placebo) and lower 3-nitrotyrosine concentrations (vs. AVP) in the V2R-antagonist group. In addition, the selective V2R-antagonist slightly prolonged survival (14 ± 1 hour) when compared to AVP (11 ± 1 hour, P = 0.007) and placebo (11 ± 1 hour, P = 0.025). CONCLUSIONS : Selective V2R-antagonism may represent an innovative therapeutic approach to attenuate multiple organ dysfunction in early septic shock.
Resumo:
The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.
Resumo:
Conventional MRI may still be an inaccurate method for the non-invasive detection of a microadenoma in adrenocorticotropin (ACTH)-dependent Cushing's syndrome (CS). Bilateral inferior petrosal sinus sampling (BIPSS) with ovine corticotropin-releasing hormone (oCRH) stimulation is an invasive, but accurate, intervention in the diagnostic armamentarium surrounding CS. Until now, there is a continuous controversial debate regarding lateralization data in detecting a microadenoma. Using BIPSS, we evaluated whether a highly selective placement of microcatheters without diversion of venous outflow might improve detection of pituitary microadenoma.
Resumo:
The PediaFlow pediatric ventricular assist device is a miniature magnetically levitated mixed flow pump under development for circulatory support of newborns and infants (3-15 kg) with a targeted flow range of 0.3-1.5 L/min. The first generation design of the PediaFlow (PF1) was manufactured with a weight of approximately 100 g, priming volume less than 2 mL, length of 51 mm, outer diameter of 28 mm, and with 5-mm blood ports. PF1 was evaluated in an in vitro flow loop for 6 h and implanted in ovines for three chronic experiments of 6, 17, and 10 days. In the in vitro test, normalized index of hemolysis was 0.0087 ± 0.0024 g/100L. Hemodynamic performance and blood biocompatibility of PF1 were characterized in vivo by measurements of plasma free hemoglobin, plasma fibrinogen, total plasma protein, and with novel flow cytometric assays to quantify circulating activated ovine platelets. The mean plasma free hemoglobin values for the three chronic studies were 4.6 ± 2.7, 13.3 ± 7.9, and 8.8 ± 3.3 mg/dL, respectively. Platelet activation was low for portions of several studies but consistently rose along with observed animal and pump complications. The PF1 prototype generated promising results in terms of low hemolysis and platelet activation in the absence of complications. Hemodynamic results validated the magnetic bearing design and provided the platform for design iterations to meet the objective of providing circulatory support for young children with exceptional biocompatibility.
Resumo:
Actinomyces europaeus was first described in 1997 as a new species causing predominantly skin and soft-tissue infections. Mastitis due to A. europaeus is an unusual condition. This article reports a case of primary breast abscess caused by A. europaeus in a postmenopausal woman.
Resumo:
The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.
Resumo:
Hydrogels are considered promising for disc regeneration strategies. However, it is currently unknown whether the destruction of the natural interface between nucleus and surrounding structures caused by nucleotomy and an inadequate annulus closure diminishes the mechanical competence of the disc. This in vitro study aimed to clarify these mechanisms and to evaluate whether hydrogels are able to restore the biomechanical behaviour of the disc. Nucleus pressure in an ovine intervertebral disc was measured in vivo during day and night and adapted to an in vitro axial compressive diurnal (15min) and night (30min) load. Effects of different defects on disc height and nucleus pressure were subsequently measured in vitro using 30 ovine motion segments. Following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue; and two different hydrogels repaired by suture and glue. The intradiscal pressure in vivo was 0.75MPa during day and 0.5MPa during night corresponding to an in vitro axial compressive force of 130 and 58N, respectively. The compression test showed that neither the implantation of hydrogels nor the re-implantation of the natural nucleus, assumed as being the ideal implant, was able to restore the mechanical functionality of an intact disc. Results indicate the importance of the natural anchorage of the nucleus with its surrounding structures and the relevance of an appropriate annulus closure. Therefore, hydrogels that are able to mimic the mechanical behaviour of the native nucleus may fail in restoring the mechanical behaviour of the disc.
Resumo:
BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Resumo:
Different pathogens, such as Escherichia coli and Staphylococcus aureus, can be responsible for different outcomes of mastitis; that is, acute and severe or chronic and subclinical. These differences in the disease could be related to different mammary responses to the pathogens. The objective of this study was to determine if intramammary challenge with the endotoxins lipopolysaccharide (LPS), from E. coli, and lipoteichoic acid (LTA), from Staph. aureus, induce different immune responses in vivo in milk cells and mammary tissue. To provide a reference level for comparing the challenge and to show the different stimulation of the mammary immune system on a quantitatively similar level, dosages of LPS and LTA were chosen that induced an increase of somatic cells in milk to similar maxima. One udder quarter in each of 21 lactating dairy cows was challenged with 0.2 mug of LPS or 20 mug of LTA. From these quarters and from respective control quarters, milk cells or tissue biopsies were obtained at 0, 6, and 12h relative to the challenge to measure mRNA expression of tumor necrosis factor-alpha (TNFalpha), IL-1beta, IL-8, lactoferrin, and RANTES (regulated upon activation, normal T-cell expressed and secreted). Furthermore, if no biopsies were performed, hourly milk samples were taken for measurement of somatic cell count, lactate dehydrogenase (LDH), and TNFalpha. Somatic cell count increased in all treatments to similar maxima with LPS and LTA treatments. Concentrations of TNFalpha in milk increased with LPS but not with LTA. The activity of LDH in milk increased in both treatments and was more pronounced with LPS than with LTA. The mRNA expression of TNFalpha, IL-1beta, IL-8, and RANTES showed increases in milk cells, and LPS was a stronger inducer than LTA. Lactoferrin mRNA expression decreased in milk cells with LPS and LTA treatments. The measured factors did not change in either treatment in mammary tissue. Challenge of udder quarters with dosages of LPS and LTA that induce similar increases in SCC stimulate the appearance of different immune factor patterns. This dissimilar response to LPS and LTA may partly explain the different course and intensity of mastitis after infection with E. coli and Staph. aureus, respectively.
Resumo:
The pathobiology of atypical scrapie, a prion disease affecting sheep and goats, is still poorly understood. In a previous study, we demonstrated that atypical scrapie affecting small ruminants in Switzerland differs in the neuroanatomical distribution of the pathological prion protein (PrP(d)). To investigate whether these differences depend on host-related vs. pathogen-related factors, we transmitted atypical scrapie to transgenic mice over-expressing the ovine prion protein (tg338). The clinical, neuropathological, and molecular phenotype of tg338 mice is similar between mice carrying the Swiss atypical scrapie isolates and the Nor98, an atypical scrapie isolate from Norway. Together with published data, our results suggest that atypical scrapie is caused by a uniform type of prion, and that the observed phenotypic differences in small ruminants are likely host-dependant. Strikingly, by using a refined SDS-PAGE technique, we established that the prominent proteinase K-resistant prion protein fragment in atypical scrapie consists of two separate, unglycosylated peptides with molecular masses of roughly 5 and 8 kDa. These findings show similarities to those for other prion diseases in animals and humans, and lay the groundwork for future comparative research.
Resumo:
Bovine mastitis caused by Mycoplasma bovis is of great economic importance to the beef and dairy industry. Here we describe a new specific real-time PCR assay targeting the uvrC gene that was developed to directly detect M. bovis from milk and tissue samples without laborious DNA purification.