992 resultados para Oscillatory behavior
Resumo:
In the present research, microstructure of a kind of limnetic shell (Hyriopsis cumingii) is observed and measured by using the scanning electron microscopy, and mechanical behavior experiments of the shell nacre are carried out by using bending and tensile tests. The dependence of mechanical properties of the shell nacre on its microstructure is analyzed by using a modified shear-lag model, and the overall stress-strain relation is obtained. The experimental results reveal that the mechanical properties of shell nacre strongly depend on the water contents of the limnetic shell. Dry nacre shows a brittle behavior, whereas wetting nacre displays a strong ductility. Compared to the tensile test, the bending test overestimates the strength and underestimates the Young's modulus. The modified shear-lag model can characterize the deformation features of nacre effectively.
Resumo:
Polydimethylsiloxane (PDMS) has been widely used as a base material for bio-MEMS/NEMS devices. It is difficult for PDMS to transfer and spread aqueous solution as a kind of highly hydrophobic material. Therefore, surface modification is necessary for PDMS to make it hydrophilic. In this paper, a method of hydrophilization of PDMS surface is proposed. Gold is sputtered to the PDMS substrate by sputter coater in different average thicknesses. Relationship between the average thickness of gold on the PDMS substrate and the contact angle of the surface was studied. It was found that even gold of average thickness less than 1 nm can result in about 25 degrees change of contact angle. AFM is also used to get topographic information of PDMS surface coated with gold. Three cases are classified with different amount of Au: (1) Heterogeneous zone; (2) Transition zone; (3) Film zone. For heterogeneous zone, a simple model about heterogeneous phase wetting is put forward to interpret this phenomenon.
Resumo:
The influence of the thermal residual stress on the deformation behavior of a composite has been analyzed with a new micromechanical method. The method is based on secant moduli approximation and a new homogenized effective stress to characterize the plastic state of the matrix. It is found that the generated thermal residual stresses after cooling and their influence on the subsequent deformation behavior depends significantly on the aspect ratio of the inclusions. With prolate inclusions, the presence of thermal residual stresses generate a higher compressive hardening curves of the composite, but it is reversed with oblate inclusions. For particle reinforced composite, thermal residual stresses induce a tensile hardening curve higher than the compressive one and this is in agreement with experimental observations. (C) 1998 Elsevier Science Ltd.
Resumo:
Fracture owing to the coalescence of numerous microcracks can be described by a simple statistical model, where a coalescence event stochastically occurs as the number density of nucleated microcracks increases. Both numerical simulation and statistical analysis reveal that a microcrack coalescence process may display avalanche behavior and that the final failure is catastrophic. The cumulative distribution of coalescence events in the vicinity of critical fracture follows a power law and the fracture profile has self-affine fractal characteristic. Some macromechanical quantities may be traced back and extracted from the mesoscopic process based on the statistical analysis of coalescence events.
Resumo:
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The dependence of microstructure and thermal stability on Fe content of bulk Nd60Al10Ni10Cu20-xFex (0 less than or equal to x less than or equal to 20) metallic glasses is investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high-resolution transmission electron micrograph (HRTEM). All samples exhibit typical amorphous feature under the detect limit of XRD, however, HRTEM results show that the microstructure of Nd60Al10Ni10Cu20-xFex alloys changes from a homogeneous amorphous phase to a composite structure consisting of clusters dispersed in amorphous matrix by increasing Fe content. Dynamic mechanical properties of these alloys with controllable microstructure are studied, expressed via storage modulus, the loss modulus and the mechanical damping. The results reveal that the storage modulus of the alloy without Fe added shows a distinct decrease due to the main a relaxation. This decrease weakens and begins at a higher temperature with increasing Fe content. The mechanism of the effect of Fe addition on the microstructure and thermal stability in this system is discussed in terms of thermodynamics viewpoints. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The role of dispersions in the numerical solutions of hydrodynamic equation systems has been realized for long time. It is only during the last two decades that extensive studies on the dispersion-controlled dissipative (DCD) schemes were reported. The studies have demonstrated that this kind of the schemes is distinct from conventional dissipation-based schemes in which the dispersion term of the modified equation is not considered in scheme construction to avoid nonphysical oscillation occurring in shock wave simulations. The principle of the dispersion controlled aims at removing nonphysical oscillations by making use of dispersion characteristics instead of adding artificial viscosity to dissipate the oscillation as the conventional schemes do. Research progresses on the dispersion controlled principles are reviewed in this paper, including the exploration of the role of dispersions in numerical simulations, the development of the dispersion-controlled principles, efforts devoted to high-order dispersion-controlled dissipative schemes, the extension to both the finite volume and the finite element methods, scheme verification and solution validation, and comments on several aspects of the schemes from author's viewpoint.
Resumo:
Quasicrystalline phase with different volume fraction were formed by isothermally annealing the as-castZr(62)Al(9.5)Ni(9.5)Cu(14)Nb(5) bulk metallic glass at 723 K for different times. The effects of quasicrystals on the deformation behavior of the materials were studied by nanoindentation and compression test. It revealed that the alloys with homogeneous amorphous structure exhibit pronounced flow serrations during the nanoindentation loading, while no obvious flow serration is observed for the sample with quasicrystals more than 10 vol.%. However, further compression tests confirm that the no-serrated flows are formed due to different reasons. For annealed samples containing quasicrystals less than 35 vol.%, continuous plastic deformation occurs due to propagation of multiple shear bands. While the disappearance of serrated flow cannot be explained by the generation of multiple shear bands for samples containing quasicrystals more than 35 vol.%, which will fracture with a totally different fracture mode, namely, dimple fracture mode under loading instead of shear fracture mode. (c) 2005 Published by Elsevier B.V.
Resumo:
Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.
Resumo:
The lytropic liquid crystals in dodecanic acid diethanolamine (DAD)/n-butanol (C4OH)/octane (n-C8H18)/deuteron (D2O) system were studied to determine the phase regions and were investigated by H-2-NMR spectroscopy,optical polarizing microscope and small-angle X-ray diffraction (SAXD) methods. The results indicate that the lamellar, hexagonal and cubic liquid crystals all exist in the above system. Keeping the weight ratio of DAD and C4OH constant,the microphase structure, H-2 quadruple splitting and the interlayer spacing are all changed with the addition of deuteron.