963 resultados para OPHTHALMIC SOLUTION 1-PERCENT
Resumo:
SnO2:Sb multi-layer coatings were prepared by the Pechini method. An investigation was made of the influence of the concentration of Sb2O3 and the viscosity of the precursor solution on the electrical and optical properties of SnO2 thin films. The use of a multi-layer system as an alternative form of increasing the packing and. thus. decreasing porosity proved to be efficient, decreasing the system's resistivity without altering its optical properties. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Electrodes of RhxTi(1-x) O-y nominal composition were prepared by thermal decomposition of the chloride or nitrate precursor salts dissolved in strongly acidic medium and applied by brush to both sides of a Tidegrees support. A systematic study of the influence of calcination temperature and time as well as oxygen flux was conducted. The coatings were characterised by SEM, EDAX, XRD, open circuit potential measurements and cyclic voltammetry (CV). Visible-ultraviolet spectrophotometry was employed to identify the chemical form of the precursor in solution while thermogravimetric analysis (TGA) was used to assess the decomposition temperature ranges. Optimisation of the coating preparation parameters showed coatings obtained from [Rh(H2O)(6)](NO3)(3) precursor dissolved in HNO3 1:2 (v/v) and fired at 430 degreesC for 2 h in a 5 1 min (-1) oxygen stream-furnished stable electrodes having the highest electrochemically active surface area. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
4-Nitroquinoline 1-oxide (4NQO)-induced rat tongue carcinogenesis is a useful model for studying oral squamous cell carcinoma. The aim of this study was to investigate the expression of bcl-2 and bax during tongue carcinogenesis induced by 4NQO. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution through their drinking water for 4, 12 or 20 weeks. Ten animals were used as negative control. Although no histological changes were induced in the epithelium after 4 weeks of carcinogen exposure, bcl-2 and bax were over-expressed (P < 0.01) in all layers of the 'normal' epithelium. The expression levels were the same in all layers of epithelium for both the antibodies used (bcl-2 or bax). In dysplastic lesions at 12 weeks following carcinogen administration, the levels of bcl-2 and bax expression did not increase when compared to negative control with the immunoreactivity for bcl-2 being restricted to the superficial layer of epithelium. In well-differentiated squamous cell carcinoma induced after 20 weeks of treatment with 4NQO, bcl-2 was expressed in some cells of tumour islands. on the other hand, immunostaining for bax was widely observed at the tumour nests. The labelling index for bcl-2 and bax showed an increase (P < 0.05) after only 4 weeks of 4NQO administration. In conclusion, our results suggest that abnormalities in the apoptosis pathways are associated with the development of persistent clones of mutated-epithelial cells in the oral mucosa. Bcl-2 and bax expression appears to be associated with a risk factor in the progression of oral cancer.
Resumo:
This study reports the photodegradation of 4-chlorophenol (4-CP) in aqueous solution by the photo-Fenton process using solar irradiation. The influence of solution path length, and Fe(NO3)(3) and H2O2 concentrations on the degradation of 4-CP is evaluated by response surface methodology. The degradation process was monitored by the removal of total organic carbon (TOC) and the release of chloride ion. The results showed a very important role of iron concentration either for TOC removal or dechlorination. on the other hand, a negative effect of increasing solution path length on mineralization was observed, which can be compensated by increasing the iron concentration. This permits an adjustment of the iron concentration according to the irradiation exposure area and path length (depth of a tank reactor). Under optimum conditions of 1.5 mM Fe(NO3)(3), 20.0 mM H2O2 and 4.5 cm solution path length, 17 min irradiation under solar light were sufficient to reduce a 72 mg C L-1 solution of 4-CP by 91 (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The (2 + 1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfies the condition R not-equal 30. A solution to this equation is explicitly exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink.
Resumo:
We use a non usual realization of the superalgebra to resolve certain two-dimensional potentials. The Hartmann and an anisotropic ring-shaped oscillator are explicitly solved.
Resumo:
This work describes the synthesis and characterization of two novel Pd(II) pyrazolyl complexes of the type [PdX2(HdmPz)(2)](n) {X=SCN- (1), N-3(-) (2); HdmPz=3,5-dimethylpyrazole} that self-assemble through N-H...NCS or N-H...NNN hydrogen bonds to yield infinite one-dimensional chains, as confirmed by single crystal X-ray study on 1. The expected solid state polymeric structure for 2 is slowly broken up in CHCl3 Solution, leading to an equilibrium mixture of cis and trans-[Pd(N-3)(2)(HdmPz)(2)] monomers, as demonstrated by time-dependent IR and NMR studies. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The molar single activity coefficients associated with propionate ion (Pr) have been determined at 25 degrees C and ionic strengths comprised between 0.300 and 3.00 M, adjusted with NaClO4, as background electrolyte. The investigation was carried out potentiometrically by using a second class Hg/Hg2Pr2 electrode. It was found that the dependence of propionate activity coefficients as a function of ionic strength (I) can be assessed through the following empirical equation: log y(Pr) = -0.185 I-3/2 + 0.104 I-2. Next, simple equations relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous solution, at 25 degrees C, as a function of ionic strength were derived, allowing the interconversion of parameters from one ionic strength to another, up to I = 3.00 M. In addition, thermodynamic formation constants as well as parameters associated with activity coefficients of the complex species in the equilibria are estimated. The body of results shows that the proposed calculation procedure is very consistent with critically selected experimental data.
Resumo:
The effect of addition of different amounts of acetylacetone (acacH) on the species formed at room temperature and after thermohydrolysis at 70 degreesC for 30 and 120 min of ethanolic SnCl4.5H(2)O solutions is followed by EXAFS spectroscopy at the Sn K-edge. We show that thermohydrolyzed solutions are a mixture of SnO2 nanoparticles and soluble tin polynuclear species. The complexation of the tin molecular precursors by acetylacetonate ligands is evidenced by H-1, C-13, and Sn-119 NMR spectroscopy and EXAFS for a acacH/Sn ratio higher than 2. Single crystals are isolated from solution and the structure, determined by X-ray diffraction, is built up from monomeric Cl-3(H2O)Sn(acac)-H2O units bridged together by hydrogen bonding. The acacH/Sn ratio in solution controls the polycondensation of the hydrolyzed species but not the crystallite size of the SnO2 nanoparticles (similar to2 nm). Because of the major presence of chelated tin mono- and dimeric complexes in solution for acacH/Sn > 2, the condensation is almost inhibited, meanwhile the decrease of amount of chelated complexes for the acacH/Sn < 2 gives rise to an increase of the number of nanoparticles.
Resumo:
dThe detection of aromatic compounds from pesticides and industrial wastewater has become of great interest, since these compounds withstand chemical oxidation and biological degradation, accumulating in the environment. In this work, a highly sensitive biosensor for detecting catechol was obtained with the immobilization of Cl-catechol 1,2-dioxygenase (CCD) in nanostructured films. CCD layers were alternated with poly(amidoamine) generation 4 (PAMAM G4) dendrimer using the electrostatic layer-by-layer (LbL) technique. Circular dichroism (CD) measurements indicated that the immobilized CCD preserved the same conformation as in solution. The thickness of the very first CCD layers in the LbL films was estimated at ca. 3.6 nm, as revealed by surface plasmon resonance (SPR). PAMAM/CCD 10-bilayer films were employed in detecting diluted catechol solutions using either an optical or electrical approach. Due to the mild immobilization conditions employed, especially regarding the pH and ionic strength of the dipping solutions, CCD remained active in the films for periods longer than 3 weeks. The optical detection comprised absorption experiments in which the formation of cis-cis muconic acid, resulting from the reaction between CCD and catechol, was monitored by measuring the absorbance at 260 nm after film immersion in catechol solutions. The electrical detection was carried out using LbL films deposited onto gold-interdigitated electrodes immersed in aqueous solutions at different catechol concentrations. Using impedance spectroscopy in a broad frequency range (1Hz-1kHz), we could detect catechol in solutions at concentrations as low as 10(-10) M. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The red Fe2+-phenanthroline complex is the basis of a classical spectrophotometric method for determination of iron. Due to the toxicity of this complexing agent, direct disposal of the wastewaters generated in analytical laboratories is not environmentally safe. This work evaluates the use of the solar photo-Fenton process for the treatment of laboratory wastewaters containing phenanthroline. Firstly, the degradation of phenanthroline in water was evaluated at two concentration levels (0.1 and 0.01%, w/v) and the efficiencies of degradation using ferrioxalate (FeOx) and ferric nitrate were compared. The 0.01% w/v solution presented much higher mineralization, achieving 82% after 30 min of solar irradiation with both iron sources. The solar photo-Fenton treatment of laboratory wastewater containing, in addition to phenanthroline, other organic compounds such as herbicides and 4-chlorophenol, equivalent to 4500 mg L-1 total organic carbon (TOC) resulted in total degradation of phenanthroline and 25% TOC removal after 150 min, in the presence of either FeOx or ferric nitrate. A ratio of 1: 10 dilution of the residue increased mineralization in the presence of ferrioxalate, achieving 38% TOC removal after 120 min, while use of ferric nitrate resulted in only 6% mineralization over the same period. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Simple equations were derived relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous sodium perchlorate media, at 25 degrees C, as a function of ionic strength (I), allowing the interconversion of parameters from one ionic strength to another, up to I = 3.00 M. In addition, thermodynamic formation constants as well as activity coefficients of the species involved in the equilibria were estimated. The results show that the proposed calculation procedure is very consistent with critically selected experimental data.
Resumo:
The reactions of the pseudohalide-bridged dimer [Pd(N,C-dmba)(mu -SCN)](2) (1) (dmba = N,N-dimethylbenzylamine) with cis-Ph2PCH=CHPPh2 (cis-dppet) (1:1 molar ratio) and of [Pd(N,C-dmba)(mu -NCO)](2) (2) with Ph2PCH2CH2PPh2 (dppe) (1:2 molar ratio) gave mononuclear [Pd(C-dmba)(SCN)(cis-dppet)].H2O (1a) and [Pd(C-dmba)(NCO)(dppe)] (2a), respectively, with the diphosphines acting as chelating ligands. Reaction of (2) with Fe(C5H4PPh2)(2) (dppf) (1:1 molar ratio) yielded [{Pd(N,C-dmba)(NCO)}(2)(mu -dppf)] (2b), a bimetallic species containing two palladium atoms bridged by the diphosphine, whereas reaction in a 1:2 molar ratio gave the mononuclear [Pd(N,C-dmba)(dppf)][NCO]. CH2Cl2 (2c), with the diphosphine acting as a chelating ligand. The compounds have been characterized by elemental analysis, i.r., P-31{H-1}, C-13- and H-1-n.m.r. spectroscopies. Conductivity measurements together with spectroscopic data showed that (1a) and (2a) do not have the same structure in the solid state and in MeCl solution, whereas for compounds (2b) and (2c) no structural changes were observed when the solids were dissolved in MeCl.
Resumo:
This paper presents a new algorithm for optimal power flow problem. The algorithm is based on Newton's method which it works with an Augmented Lagrangian function associated with the original problem. The function aggregates all the equality and inequality constraints and is solved using the modified-Newton method. The test results have shown the effectiveness of the approach using the IEEE 30 and 638 bus systems.
Resumo:
Taking into consideration that glutatione S-transferase (GST) and cellular proliferation play a crucial role during carcinogenesis, the goal of this study was to investigate the expression of placental GST, called GST-P, and proliferating cellular nuclear antigen (PCNA) by means of immunohistochemistry during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide (4NQO). This is a useful model for studying oral squamous cell carcinoma phase by phase. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution by drinking water for 4, 12 or 20 weeks. Ten animals were used as negative control. GST-P positive foci were detected in non-neoplastic oral cells at 4 weeks of 4NQO administration. In the same way, GST-P positive cells were detected in pre-neoplastic lesions and squamous cell carcinomas induced after 12 and 20 weeks-treatment, respectively. None of the control animals expressed GST-P positive cells. Regarding cellular proliferation, PCNA positive nuclei were higher at 12 and 20 weeks following 4NQO exposure (p < 0.05) when compared to negative control. These results suggest that the expression of GST-P is correlated with cellular proliferation, in which GST-P is associated with risk and progression of oral cancer, whereas PCNA is closely involved during neoplastic conversion. (c) 2007 Published by Elsevier GmbH.