934 resultados para Neutral wire


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O&Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O&Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen Este trabajo analiza algunos aspectos de las negociaciones e iniciativas que intentan enfrentar el cambio climático a nivel internacional, poniendo énfasis en los mecanismos de compensación y la creación de los mercados de carbono, su significado en relación a  la creación de “derechos de propiedad sobre la contaminación de la atmósfera” y en relación a la efectividad  que estos esquemas tienen para  enfrentar el Cambio Climático. Asimismo, se analiza su vinculación con la propuesta del actual gobierno de Costa Rica (Oscar Arias Sánchez, 2006-2010) denominada “Costa Rica, Carbono Neutral para el año 2021” y su pertinencia para enfrentar el Cambio Climático en nuestro país.  Abstract This document analyzes some aspects of the international negotiations and initiatives that intent to face out Climate Change. It put emphasis on the offset mechanisms and carbon markets, their meaning in terms of the creation of “property” over the atmosphere contamination rights and in term of their efficiency to face the Climate Change.  It also analyzes the relationship of these initiatives with the actual Costa Rican Government (Oscar Arias Sánchez, 2006-2010) proposal, named “Costa Rica, Carbon Neutral 2021” and its adequacy to confront Climate Change in the country.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overarching theme of this thesis is mesoscale optical and optoelectronic design of photovoltaic and photoelectrochemical devices. In a photovoltaic device, light absorption and charge carrier transport are coupled together on the mesoscale, and in a photoelectrochemical device, light absorption, charge carrier transport, catalysis, and solution species transport are all coupled together on the mesoscale. The work discussed herein demonstrates that simulation-based mesoscale optical and optoelectronic modeling can lead to detailed understanding of the operation and performance of these complex mesostructured devices, serve as a powerful tool for device optimization, and efficiently guide device design and experimental fabrication efforts. In-depth studies of two mesoscale wire-based device designs illustrate these principles—(i) an optoelectronic study of a tandem Si|WO3 microwire photoelectrochemical device, and (ii) an optical study of III-V nanowire arrays.

The study of the monolithic, tandem, Si|WO3 microwire photoelectrochemical device begins with development and validation of an optoelectronic model with experiment. This study capitalizes on synergy between experiment and simulation to demonstrate the model’s predictive power for extractable device voltage and light-limited current density. The developed model is then used to understand the limiting factors of the device and optimize its optoelectronic performance. The results of this work reveal that high fidelity modeling can facilitate unequivocal identification of limiting phenomena, such as parasitic absorption via excitation of a surface plasmon-polariton mode, and quick design optimization, achieving over a 300% enhancement in optoelectronic performance over a nominal design for this device architecture, which would be time-consuming and challenging to do via experiment.

The work on III-V nanowire arrays also starts as a collaboration of experiment and simulation aimed at gaining understanding of unprecedented, experimentally observed absorption enhancements in sparse arrays of vertically-oriented GaAs nanowires. To explain this resonant absorption in periodic arrays of high index semiconductor nanowires, a unified framework that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes is developed in the context of silicon, using both analytic theory and electromagnetic simulations. This detailed theoretical understanding is then applied to a simulation-based optimization of light absorption in sparse arrays of GaAs nanowires. Near-unity absorption in sparse, 5% fill fraction arrays is demonstrated via tapering of nanowires and multiple wire radii in a single array. Finally, experimental efforts are presented towards fabrication of the optimized array geometries. A hybrid self-catalyzed and selective area MOCVD growth method is used to establish morphology control of GaP nanowire arrays. Similarly, morphology and pattern control of nanowires is demonstrated with ICP-RIE of InP. Optical characterization of the InP nanowire arrays gives proof of principle that tapering and multiple wire radii can lead to near-unity absorption in sparse arrays of InP nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un Proyecto Constitucional de Garantías Económicas, con un sentido similar al actual Título de Derechos y Garantías Sociales, contribuiría seguramente a fortalecer la Democracia Económica y el Estado de Derecho en Costa Rica. Pero para el logro de tal fin, debería tratarse de un proyecto integral que logre simultáneamente, al menos, dos objetivos no fácilmente armonizables: a) aumentar la flexibilidad y la eficacia de la política económica y del rol del Estado en la economía, y b) definir y acotar un tipo de control democrático sobre los márgenes de acción de quienes ejercen la política macroeconómica en particular, y las políticas públicas en general. Por el contrario, el así llamado "Proyecto de Garantías Económicas" -eminentemente fiscaliza- impone límites de acción solo en determinadas áreas y funciones de la acción estatal, por lo que representa una visión unilateral de la realidad y de la política económica practicada en la Costa Rica de los últimos años.Aunque los estudios sobre el ciclo económico en Costa Rica son escasos, y no suministran conclusiones tajantes, hay suficientes indicios para sostener que existe un margen importante para la manipulación cortoplacista de la política económica, y que este margen ha sido utilizado efectivamente, sin una debida evaluación -o incluso a pesar de ella- de las consecuencias de mediano y largo plazo de las acciones tomadas.Estas reflexiones se enmarcan en el debate entre neokeynesianos y monetaristas sobre el papel de las reglas versus las políticas discrecionales en materia de intervención estatal en la economía, y se sostiene la necesidad de democratizar la gestión macroeconómica de los gobiernos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search for time-integrated violation of the CP symmetry, ACP(K−K+), in the Cabibbo-suppressed D0 → K−K+ decays is performed at the LHCb detector using proton- proton collisions recorded from 2015 to 2018 at the centre of mass energy of 13 TeV. The data used corresponds to an integrated luminosity of 5.7 fb−1. The flavour of the charm mesons is defined from the charge of the pion in D∗+ → D0π+ and D∗− → D0π− decays. Nuisance asymmetries are constrained from D∗+ → D0(→ K−π+)π+, D+ → KS0π+, D+ → K−π+π+, Ds+ → KS0K+ and Ds+ → φπ+ decays. The ACP(K−K+) asymme- try is measured to be ACP (K−K+) = (6.8 ± 5.4 (stat) ± 1.6 (syst)) · 10−4, in agreement with the previous LHCb results and the current world average. This represents the world’s most precise measurement of this quantity to date. Combining ACP (K−K+) with the time-integrated CP asymmetry difference, ∆ACP = ACP (K−K+)− ACP (π−π+), and the time-dependent CP asymmetry, ∆Y , measured with D0 → K−K+ and D0 → π−π+ decays, the direct CP asymmetries in D0 → K−K+ and D0 → π−π+ decays, adKK and adππ, result to be adKK =(7.7±5.7)·10−4, adππ =(23.2±6.1)·10−4, where the errors include systematic and statistical uncertainties and the correlation be- tween the two values is ρ(adKK,adππ) = 0.88. The values differ from zero for 1.4 and 3.8 standard deviations, respectively. In particular, adππ shows an evidence for direct CP violation in D0 → π−π+ decays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of turbulence is also nowadays a problem that does not have solution from the mathematical point of view due to the lack of solution to link the mean part of the flow with the fluctuating one. To solve this problem, in the CICLoPE laboratory of Predappio, experiments on different type of jets are performed in order to derive a closure model able to close our mathematical model. One of the most interesting type of jet that could be studied is the planar turbulent free jet which is a two dimensional canonical jet characterized by the self-similarity condition of the velocity profiles. To study this particular jet, a new facility was built. The aim of this project is to characterize the jet at different distances from the nozzle exit, for different values of Reynolds number, to demonstrate that the self-similarity condition is respected. To do that, the evaluation of quantities such as spreading rate, centerline velocity decay and relation between fluctuations and mean part of the flow has to be obtain. All these parameters could be detected thanks to the use of single and X hot-wire anemometry with which it is possible to analyzed the fluctuating behaviour of the flow by associating to an electric signal a physical variable expressed in terms of velocity. To justify the data obtain by the measures, a comparison with results coming from the literature has to be shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hadrontherapy exploits beams of charged particles against deep cancers. These ions have a depth-dose profile in which there is a little release of energy at the beginning of their path, whereas there is a sharp maximum, the Bragg Peak, near its end path. However, if heavy ions are used, the fragmentation of the projectile can happen and the fragments can release some dose outside the treatment volume beyond the Bragg peak. The fragmentation process takes place also when the Galactic Cosmic Rays at high energy hit the spaceship during space missions. In both cases some neutrons can be produced and if they interact with the absorbing materials nuclei some secondary particles are generated which can release energy. For this reason, studies about the cross section measurements of the fragments generated during the collisions of heavy ions against the tissues nuclei are very important. In this context, the FragmentatiOn Of Target (FOOT) experiment was born, and aims at measuring the differential and double differential fragmentation cross sections for different kinetic energies relevant to hadrontherapy and space radioprotection with high accuracy. Since during fragmentation processes also neutrons are produced, tests of a neutron detection system are ongoing. In particular, recently a neutron detector made up of a liquid organic scintillator, BC-501A with neutrons/gammas discrimination capability was studied, and it represents the core of this thesis. More in details, an analysis of the data collected at the GSI laboratory, in Darmstadt, Germany, is effectuated which consists in discriminating neutral and charged particles and then to separate neutrons from gammas. From this analysis, a preliminary energy-differential reaction cross-section for the production of neutrons in the 16O + (C_2H_4)_(n) and 16O + C reactions was estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una delle domande che ha da sempre profondamente interessato l’ambito degli studi linguistici è se sia la lingua a riflettere la società dei parlanti o se sia la società dei parlanti a essere plasmata dalla lingua. O, ancora, se esse non siano direttamente coinvolte in una dinamica di reciproca influenza che permette loro di modellarsi a vicenda. Qualunque sia la risposta, certo è che negli ultimi tempi la società ha cambiato radicalmente il proprio modo di pensare e approcciarsi ad alcune tematiche, quali, ad esempio, la questione dell’identità di genere e dei diritti delle comunità LGBTQ+. È dunque inevitabile che il linguaggio che ha a che fare con tale ambito della società rimanga inalterato e non subisca cambiamenti in termini di usi e caratteristiche. L’obiettivo di queste pagine è quello di esplorare le problematiche legate all’uso improprio del linguaggio in relazione alle identità di genere non binarie, facendo riferimento in particolare al testo poetico e alla sua traduzione e fornendo, infine, un esempio pratico di come poche accortezze possano rendere il linguaggio totalmente inclusivo e più accomodante per coloro che attraversano i confini del binarismo di genere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scope of this study is to design an automatic control system and create an automatic x-wire calibrator for a facility named Plane Air Tunnel; whose exit creates planar jet flow. The controlling power state as well as automatic speed adjustment of the inverter has been achieved. Thus, the wind tunnel can be run with respect to any desired speed and the x-wire can automatically be calibrated at that speed. To achieve that, VI programming using the LabView environment was learned, to acquire the pressure and temperature, and to calculate the velocity based on the acquisition data thanks to a pitot-static tube. Furthermore, communication with the inverter to give the commands for power on/off and speed control was also done using the LabView VI coding environment. The connection of the computer to the inverter was achieved by the proper cabling using DAQmx Analog/Digital (A/D) input/output (I/O). Moreover, the pressure profile along the streamwise direction of the plane air tunnel was studied. Pressure tappings and a multichannel pressure scanner were used to acquire the pressure values at different locations. Thanks to that, the aerodynamic efficiency of the contraction ratio was observed, and the pressure behavior was related to the velocity at the exit section. Furthermore, the control of the speed was accomplished by implementing a closed-loop PI controller on the LabView environment with and without using a pitot-static tube thanks to the pressure behavior information. The responses of the two controllers were analyzed and commented on by giving suggestions. In addition, hot wire experiments were performed to calibrate automatically and investigate the velocity profile of a turbulent planar jet. To be able to analyze the results, the physics of turbulent planar jet flow was studied. The fundamental terms, the methods used in the derivation of the equations, velocity profile, shear stress behavior, and the effect of vorticity were reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive scalars measurements in turbulent pipe flows are difficult to perform and only few experimental data are available in literature. The present thesis deals with the experimental acquisition and study of the first turbulent temperature profile inside the CICLoPE wind tunnel through cold wire anemometry technique at Reτ = 6000 and Reτ = 9500. This type of measurements provides not only useful data on temperature (and passive scalars) behaviour and statistics in turbulent pipe flows, but could be used also for temperature correction of turbulent velocity profiles. In the present work, subsequent acquisitions of temperature and velocity profiles has been performed at the same Reynolds number and in the same points, through cold wire and hot wire techniques respectively. Taking as reference data from both DNS and experimental campaigns, the activity has been carried out obtaining satisfactory results. We have verified the presence of turbulent temperature profile inside the CICLoPE wind tunnel and then studied its statistical and spectral behaviours obtaining results in agreement with existing data from Hishida, Nagano, and Ferro. Cold wire temperature data were then used to correct hot wire velocity data, obtaining a slightly improvement in the near wall region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Additive Manufacturing (AM), also known as “3D printing”, is a recent production technique that allows the creation of three-dimensional elements by depositing multiple layers of material. This technology is widely used in various industrial sectors, such as automotive, aerospace and aviation. With AM, it is possible to produce particularly complex elements for which traditional techniques cannot be used. These technologies are not yet widespread in the civil engineering sector, which is slowly changing thanks to the advantages of AM, such as the possibility of realizing elements without geometric restrictions, with less material usage and a higher efficiency, in particular employing Wire-and-Arc Additive Manufacturing (WAAM) technology. Buildings that benefit most from AM are all those structures designed using form-finding and free-form techniques. These include gridshells, where joints are the most critical and difficult elements to design, as the overall behaviour of the structure depends on them. It must also be considered that, during the design, the engineer must try to minimize the structure's own weight. Self-weight reductions can be achieved by Topological Optimization (TO) of the joint itself, which generates complex geometries that could not be made using traditional techniques. To sum up, weight reductions through TO combined with AM allow for several potential benefits, including economic ones. In this thesis, the roof of the British Museum is considered as a case study, analysing the gridshell structure of which a joint will be chosen to be designed and manufactured, using TO and WAAM techniques. Then, the designed joint will be studied in order to understand its structural behaviour in terms of stiffness and strength. Finally, a printing test will be performed to assess the production feasibility using WAAM technology. The computational design and fabrication stages were carried out at Technische Universität Braunschweig in Germany.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although being studied only for few years, Wire and Arc Additive Manufacturing (WAAM) will become the predominant way of producing stainless-steel elements in a near-like future. The analysis and study of such elements has yet to be defined in a proper way, but the projects regarding this subject are innovating more and more thanks to the findings discovered by the latter. This thesis is focused on an initial stage on the analysis of mechanical and geometrical properties of such stainless-steel elements produced by MX3D laboratories in Amsterdam, and to perform a calibration of the design strength values by means of Annex D of Eurocode 0, which talks about the analysis of the semi-probabilistic safety factors, hence the definition of characteristic values. Moreover, after testing the stainless-steel specimens by means of strain gauges and after obtaining mechanical and geometrical properties, a statistical analysis of such properties and an evaluation of characteristic values is performed. After this, there is to execute the calibration of design strength values of WAAM inclined bars and intersections.