649 resultados para Neuropsychological


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The natural history of Myotonic Dystrophy type 1 is largely unclear, longitudinal studies are lacking. Objectives: to collect clinical and laboratory data, to evaluate sleep disorders, somatic and autonomic skin fibres, neuropsychological and neuroradiological aspects in DM1 patients. Methods: 72 DM1 patients underwent a standardized clinical and neuroradiological evaluation performed by a multidisciplinary team during 3 years of follow-up. Results: longer disease duration was associated with higher incidence of conduction disorders and lower ejection fraction; higher CVF values were predictors for a reduced risk of cardiopathy. Lower functional pulmonary values were associated with class of expansion and were negatively associated with disease duration; arterial blood gas parameters were not associated with expansion size, disease duration nor with respiratory function test. Excessive daytime sleepiness was not associated with class of expansion nor with any of the clinical parameters examined. We detected apnoea in a large percentage of patients, without differences between the 3 genetic classes; higher CVF values were predictors for a reduced risk of apnoea. Skin biopsies demonstrated the presence of a subclinical small fibre neuropathy with involvement of the somatic fibres. The pupillometry study showed lower pupil size at baseline and a lower constriction response to light. The most affected neuropsychological domains were executive functions, visuoconstructional, attention and visuospatial tasks, with a worse performance of E1 patients in the visuoperceptual ability and social cognition tasks. MRI study demonstrated a decrease in the volumes of frontal, parietal, temporal, occipital cortices, accumbens, putamen nuclei and a more severe volume reduction of the isthmus cingulate, transverse temporal, superior parietal and temporal gyri in E2 patients. Discussion: only some clinical parameters could predict the risk of cardiopathy, pulmonary syndrome and sleep disorders, while other clinical aspects proved to be unpredictable, confirming the importance of periodic clinical follow-up of these patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the methods based on the free energy principle and active inference for modelling cognition. Active inference is an emerging framework for designing intelligent agents where psychological processes are cast in terms of Bayesian inference. Here, I appeal to it to test the design of a set of cognitive architectures, via simulation. These architectures are defined in terms of generative models where an agent executes a task under the assumption that all cognitive processes aspire to the same objective: the minimization of variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal form of cognition able to achieve autopoiesis. In chapter 3 I present the method of how I formalize generative models for action and perception. The architectures proposed allow providing a more biologically plausible account of more complex cognitive processing that entails deep temporal features. I then present three simulation studies that aim to show different aspects of cognition, their associated behavior and the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the visuomotor system for the encoding of actions during action observation, understanding and imitation. In chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control and the modulation of attention for action selection. At last, I argue how active inference can provide a formal account of information processing in the brain and how the adaptive capabilities of the simulated agents are a mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an emergent property of the minimization of variational free energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a prospective study conducted at the IRCCS Istituto delle Scienze Neurologiche di Bologna is presented. The aim was to investigate the brain functional connectivity of a cohort of patients (N=23) suffering from persistent olfactory dysfunction after SARS-CoV-2 infection (Post-COVID-19 syndrome), as compared to a matching group of healthy controls (N=26). In particular, starting from individual resting state functional-MRI data, different analytical approaches were adopted in order to find potential alterations in the connectivity patterns of patients’ brains. Analyses were conducted both at a whole-brain level and with a special focus on brain regions involved in the processing of olfactory stimuli (Olfactory Network). Statistical correlations between functional connectivity alterations and the results of olfactory and neuropsychological tests were investigated, to explore the associations with cognitive processes. The three approaches implemented for the analysis were the seed-based correlation analysis, the group-level Independent Component analysis and a graph-theoretical analysis of brain connectivity. Due to the relative novelty of such approaches, many implementation details and methodologies are not standardized yet and represent active research fields. Seed-based and group-ICA analyses’ results showed no statistically significant differences between groups, while relevant alterations emerged from those of the graph-based analysis. In particular, patients’ olfactory sub-graph appeared to have a less pronounced modular structure compared to the control group; locally, a hyper-connectivity of the right thalamus was observed in patients, with significant involvement of the right insula and hippocampus. Results of an exploratory correlation analysis showed a positive correlation between the graphs global modularity and the scores obtained in olfactory tests and negative correlations between the thalamus hyper-connectivity and memory tests scores.