785 resultados para Membranemechanics, AFM, pore spanning membranes, nano-BLMs
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of mildly acidic conditions on the free energy of unfolding (Delta G(u)(buff)) of the pore-forming alpha-hemolysin (alpha HL) from Staphylococcus aureus were assessed between pH 5.0 and 7.5 by measuring intrinsic tryptophan fluorescence, circular dichroism and elution time in size exclusion chromatography during urea denaturation, Decreasing the pH from 7.0 to 5.0 reduced the calculated Delta G(u)(buff) from 8.9 to 4.2 kcal moI(-1), which correlates with an increased rate of pore formation previously observed over the same pH range, It is proposed that the lowered surface pH of biological membranes reduces the stability of alpha HL thereby modulating the rate of pore formation. (C) 1999 Federation of European Biochemical Societies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Objective: The purpose of this study was to research a membrane material for use in guided bone regeneration. Study design: In this study, 25 male Wistar rats were used to analyze the biocompatibility and degradation process of biomembranes. The morphological changes in subcutaneous implantations were assessed after 7, 14, 21, 28 and 70 days. The materials were made of polyurethane polymer (AUG) obtained from vegetal oil (Ricinus communis) and polytetrafluoroethylene membrane (PTFE). The surface characteristics of the physical barriers in scanning electronic microscopic (SEM) were also evaluated. Results: In both groups, the initial histological analysis showed moderate inflammatory infiltrate, which was predominantly polymorphonuclear. There was also a presence of edema, which was gradually replaced by granulation tissue, culminating in a fibrous capsule. In the AUG group, some multinucleated giant cells were present in the contact interface, with the space previously occupied by the material. However, membrane degradation was not observed during the period studied. According to the present SEM findings, porosity was not detected in the AUG or PTFE membranes. Conclusion: The researched material is biocompatible and the degradation process is extremely slow or may not even occur at all.
Resumo:
Purpose: The aim of this study was to quantitatively evaluate and qualitatively describe autogenous bone graft healing with or without an expanded polytetrafluoroethylene (e-PTFE) membrane in ovariectornized rats. Materials and Methods: Eighty Wistar rats, weighing approximately 300 g each, were used. A graft was obtained from the parietal bone and fixed to the sidewall of each animal's left mandibular ramus. The animals were randomly divided into four experimental groups (n = 20 in each group): group 1, sham operated and autogenous bone graft only- group 2, sham operated and autogenous bone graft covered by e-PTFE membrane; group 3, ovariectornized (OVX) and autogenous bone graft only- group 4, OVX and autogenous bone graft covered by e-PTFE membrane. The animals were sacrificed at five different time points: immediately after grafting or at 7, 21, 45, or 60 days after grafting. Histologic examination and morphometric measurement of the sections were performed, and values were submitted to statistical analyses. Results: Both groups (sham and OVX) experienced loss of the original graft volume when it was not covered by the membrane, whereas use of the membrane resulted in additional bone formation beyond the edges of the graft and under the membrane. Histologic analysis showed integration of the grafts in all animals, although a larger number of marrow spaces was found in OVX groups. Conclusions: Association of bone graft with an e-PTFE membrane resulted in maintenance of its original volume as well as formation of new bone that filled the space under the membrane. Osteopenia did not influence bone graft repair, regardless of whether or not it was associated with e-PTFE membrane, but descriptive histologic analysis showed larger numbers of marrow spaces in the bone graft and receptor bed and formation of new bone in the OVX animals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1074-1082
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silica sonogels with different porosities were prepared by acid sono-hydrolysis of tetraethoxysilane. Wet sonogels were studied using small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC shows a broad thermal peak below the normal water melting point associated with the melting of confined ice nanocrystals, or nanoporosity. The nanopore size distribution was determined from the Gibbs-Thomson equation. As the porosity is increased, a second sharp DSC thermal peak with onset temperature at the water melting point is apparent, which was associated with the melting of ice macrocrystals, or macroporosity. The DSC result could be causing misinterpretation of the macroporosity because water may not be exactly confined in very feeble silica network regions in sonogels with high porosity. The structure of the wet gels can be described fairly well as mutually self-similar mass fractal structures with characteristic length. increasing from similar to 1.8 to similar to 5.4 nm and mass fractal dimension D diminishing discretely from similar to 2.6 to similar to 2.3 as the porosity increases in the range studied. More specifically, such a structure could be described using a two-parameter correlation function gamma(r) similar to r(D-3) exp(-r/xi), which is limited at larger scale by the cut-off distance xi but without a well-defined small scale cut-off distance, at least up to the maximum angular domain probed using SAXS in the present study.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the present study was to standardize the analysis of zinc binding on human red blood cell (RBC) membranes in 20 normal adults. The displacement studies revealed that at the maximal stable zinc concentration tested (600 muM), 57% (mean) of the bound Zn-65 was displaced and to displace half maximal Zn-65, the stable zinc concentration was 300 muM. Scatchard plots revealed two classes of binding sites for zinc on RBC membranes: one with higher affinity, Kd = 1.20 x 10(-5) M (site I), and the other with lower affinity, Kd = 2.77 x 10(-4) M (site II). Binding sites occupancy was 97% means and 58.5% means for sites I and 11, respectively. The displacement was affected by temperature, membrane protein concentration, freezing, thawing, and dialysis. Other metal cations, including Co++, Fe++, and Mn++, had very little effect on Zn-65 displacement, in contrast copper displaced Zn-65 from its binding sites on RBC membranes. Zinc binding to RBC membranes was rapid and readily reversible in a dynamic equilibrium with its binding sites. It is anticipated that this method will be applicable to studies of a wide variety of diseases specifically related to zinc metabolism in humans as well as in animals. (C) 1994 Wiley-Liss, Inc.