898 resultados para Maintenance, Rehabilitation, Budget Estimate, Roads, Asset Management
Resumo:
The objective of this study is to systematically evaluate the Iowa Department of Transportation’s (DOT’s) existing Pavement Management Information System (PMIS) with respect to the input information required for Mechanistic-Empirical Pavement Design Guide (MEPDG) rehabilitation analysis and design. To accomplish this objective, all of available PMIS data for interstate and primary roads in Iowa were retrieved from the Iowa DOT PMIS. The retrieved data were evaluated with respect to the input requirements and outputs for the latest version of the MEPDG software (version 1.0). The input parameters that are required for MEPDG HMA rehabilitation design, but currently unavailable in the Iowa DOT PMIS were identified. The differences in the specific measurement metrics used and their units for some of the pavement performance measures between the Iowa DOT PMIS and MEPDG were identified and discussed. Based on the results of this study, it is recommended that the Iowa DOT PMIS should be updated, if possible, to include the identified parameters that are currently unavailable, but are required for MEPDG rehabilitation design. Similarly, the measurement units of distress survey results in the Iowa DOT PMIS should be revised to correspond to those of MEPDG performance predictions. *******************Large File**************************
Resumo:
The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for rapid processing of the FWD data along with a user manual. The software system automatically reads the FWD raw data collected by the JILS-20 type FWD machine that Iowa DOT owns, processes and analyzes the collected data with the rapid prediction algorithms developed during the phase I study. This system smoothly integrates the FWD data analysis algorithms and the computer program being used to collect the pavement deflection data. This system can be used to assess pavement condition, estimate remaining pavement life, and eventually help assess pavement rehabilitation strategies by the Iowa DOT pavement management team. This report describes the developed software in detail and can also be used as a user-manual for conducting simulation studies and detailed analyses. *********************** Large File ***********************
Resumo:
Highway construction is among the most dangerous industries in the US. Internal traffic control design, along with how construction equipment and vehicles interact with the traveling public, have a significant effect on how safe a highway construction work zone can be. An integrated approach was taken to research work-zone safety issues and mobility, including input from many personnel, ranging from roadway designers to construction laborers and equipment operators. The research team analyzed crash data from Iowa work-zone incident reports and Occupational Safety and Health Administration data for the industry in conjunction with the results of personal interviews, a targeted work-zone ingress and egress survey, and a work-zone pilot project.
Resumo:
It is intuitively obvious that snow or ice on a road surface will make that surface more slippery and thus more hazardous. However, quantifying this slipperiness by measuring the friction between the road surface and a vehicle is rather difficult. If such friction readings could be easily made, they might provide a means to control winter maintenance activities more efficiently than at present. This study is a preliminary examination of the possibility of using friction as an operational tool in winter maintenance. In particular, the relationship of friction to traffic volume and speed, and accident rates is examined, and the current lack of knowledge in this area is outlined. The state of the art of friction measuring techniques is reviewed. A series of experiments whereby greater knowledge of how friction deteriorates during a storm and is restored by treatment is proposed. The relationship between plowing forces and the ice-pavement bond strength is discussed. The challenge of integrating all these potential sources of information into a useful final product is presented together with a potential approach. A preliminary cost-benefit analysis of friction measuring devices is performed and suggests that considerable savings might be realized if certain assumptions should hold true. The steps required to bring friction from its current state as a research tool to full deployment as an operational tool are presented and discussed. While much remains to be done in this regard, it is apparent that friction could be an extremely effective operational tool in winter maintenance activities of the future.
Resumo:
Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. In reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 1) presents the results of Concept 1 - Steel Beam Precast Units. Concept 2 - Modification of the Beam-in-Slab Bridge is presented in Volume 2. Concept 1, involves the fabrication of precast units (two steel beams connected by a concrete slab) by county work forces. Deck thickness is limited so that the units can be fabricated at one site and then transported to the bridge site where they are connected and the remaining portion of the deck placed. Since Concept 1 bridge is primarily intended for use on low-volume roads, the precast units can be constructed with new or used beams. In the experimental part of the investigation, there were three types of static load tests: small scale connector tests, "handling strength" tests, and service and overload tests of a model bridge. Three finite element models for analyzing the bridge in various states of construction were also developed. Small scale connector tests were completed to determine the best method of connecting the precast double-T (PCDT) units. "Handling strength" tests on an individual PCDT unit were performed to determine the strength and behavior of the precast unit in this configuration. The majority of the testing was completed on the model bridge [L=9,750 mm (32 ft), W=6,400 mm (21 ft)] which was fabricated using the precast units developed. Some of the variables investigated in the model bridge tests were number of connectors required to connect adjacent precast units, contribution of diaphragms to load distribution, influence of position of diaphragms on bridge strength and load distribution, and effect of cast-in-place portion of deck on load distribution. In addition to the service load tests, the bridge was also subjected to overload conditions. Using the finite element models developed, one can predict the behavior and strength of bridges similar to the laboratory model as well as design them. Concept 1 has successfully passed all laboratory testing; the next step is to field test it.
Resumo:
This report contains an evaluation and design manual for strengthening and replacing low volume steel stringer and timber stringer bridges. An advisory panel consisting of county and municipal engineers provided direction for the development of the manual. NBI bridge data, along with results from questionnaires sent to county and municipal engineers were used to formulate the manual. Types of structures shown to have the greatest need for cost-effective strengthening methods are steel stringer and timber stringer bridges. Procedures for strengthening these two types of structures have been developed. Various types of replacement bridges have also been included so that the most cost effective solution for a deficient bridge may be obtained. The key results of this study is an extensive compilation, which can be used by county engineers, of the most effective techniques for strengthening deficient existing bridges. The replacement bridge types included have been used in numerous low volume applications in surrounding states, as well as in Iowa. An economic analysis for determining the cost-effectiveness of the various strengthening methods and replacement bridges is also an important part of the manual. Microcomputer spreadsheet software for several of the strengthening methods, types of replacement bridges and for the economic analysis has been developed, documented and presented in the manual. So the manual, Chp. 3 of the final report, can be easily located, blue divider pages have been inserted to delineate the manual from the rest of the report.
Resumo:
The Iowa Department of Transportation is committed to improved management systems, which in turn has led to increased automation to record and manage construction data. A possible improvement to the current data management system can be found with pen-based computers. Pen-based computers coupled with user friendly software are now to the point where an individual's handwriting can be captured and converted to typed text to be used for data collection. It would appear pen-based computers are sufficiently advanced to be used by construction inspectors to record daily project data. The objective of this research was to determine: (1) if pen-based computers are durable enough to allow maintenance-free operation for field work during Iowa's construction season; and (2) if pen-based computers can be used effectively by inspectors with little computer experience. The pen-based computer's handwriting recognition was not fast or accurate enough to be successfully utilized. The IBM Thinkpad with the pen pointing device did prove useful for working in Windows' graphical environment. The pen was used for pointing, selecting and scrolling in the Windows applications because of its intuitive nature.
Resumo:
There has been a great deal of concern by county engineers and supervisors over constrained budgets, lack of resources and a deteriorating infrastructure, as they affect the secondary road system in Iowa. In addition, public input and/or political pressure have been increasing over the years. This study was initiated to determine the most important issues facing counties and document the way in which various Iowa counties have been addressing those issues. The list of issues was developed through meetings of county engineers and supervisors in each of the Iowa Department of Transportation (DOT) regions around the state. Questionnaires were sent to all engineers and supervisors statewide asking them how the various issues (e.g. snow and ice removal policies, Level "B" roads, and so on) were handled in their respective counties. The responses were then compiled into this document. The subjects selected and used include: county policies, ordinances, resolutions; snow and ice removal policy; dust control; Level "B" roads; vacating roads; rural development; private entrance construction and maintenance; roadside management practices; right of way encroachments and easements; personnel matters, staff and organization; communicating information to citizens; supervisor/ engineer relations; and county leasing/purchasing practices.
Resumo:
Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: (1) Design criteria and levels of maintenance; (2) Consistency in the use of standards among jurisdictions; (3) Consolidation of maintenance operations at one jurisdiction level; and (4) Jurisdicational authority for roads; The issues formed the background for Research Project HR-265.
Resumo:
Snow removal on the 90,000 mile Iowa secondary road system is a major concern of county engineers. Rural residents rely almost entirely on motor vehicles for travel. They have come to expect passable roads during all types of weather and as most county engineers know, the public is less tolerant of problems in snow removal than in any other highway department function. To avoid snow removal problems, maintenance personnel begin preparation before the winter maintenance season. The slide tape presentation, "Snow Removal on Iowa's Secondary Roads", was developed to assist in training and retraining maintenance personnel each year prior to winter. The program covers preparation for winter, snow and ice removal, and after storm care of equipment.
Resumo:
The first phase of this research involved an effort to identify the issues relevant to gaining a better understanding of the County Engineering profession. A related objective was to develop strategies to attract responsible, motivated and committed professionals to pursue County Engineering positions. In an era where a large percentage of County Engineers are reaching retirement age, the shrinking employment pool may eventually jeopardize the quality of secondary road systems not only in Iowa, but nationwide. As we move toward the 21st century, in an era of declining resources, it is likely that professional staff members in charge of secondary roads will find themselves working with less flexible budgets for the construction and maintenance of roads and bridges. It was important to understand the challenges presented to them, and the degree to which those challenges will demand greater expertise in prioritizing resource allocations for the rehabilitation and maintenance of the 10 million miles of county roads nationwide. Only after understanding what a county engineer is and what this person does will it become feasible for the profession to begin "selling itself", i.e., attracting a new generation of County Engineers. Reaching this objective involved examining the responsibilities, goals, and, sometimes, the frustrations experienced by those persons in charge of secondary road systems in the nine states that agreed to participate in the study. The second phase of this research involved addressing ways to counter the problems associated with the exodus of County Engineers who are reaching retirement age. Many of the questions asked of participants asked them to compare the advantages and disadvantages of public sector work with the private sector. Based on interviews with nearly 50 County Engineers and feedback from 268 who returned surveys for the research, issues relevant to the profession were analyzed and recommendations were made to the profession as it prepares to attract a new generation. It was concluded that both State and Regional Associations for County Engineers, and the National Association of County Engineers are most well-situated to present opportunities for continued professional development. This factor is appealing for those who are interested in competitive advantages as professionals. While salaries in the public sector may not be able to effectively compete with those offered by the private sector, it was concluded that this is only one factor of concern to those who are in the business of "public service". It was concluded, however, that Boards of Supervisors and their equivalents in other states will need to more clearly understand the value of the contributions made by County Engineers. Then the selling points the profession can hope to capitalize on can focus on the strength of state organizations and a strong national organization that act as clearinghouses of information and advocates for the profession, as well as anchors that provide opportunities for staying current on issues and technologies.
Resumo:
The Iowa demonstration project to promote the rehabilitation of bridge deck concrete by rebonding delaminations with injected epoxy is a 150 ft x 150 ft high truss bridge on Iowa route No. 210 over Indian Creek near Maxwell in Story County (Service level D, AADT-730, Inventory Rating HS-16.9, Operating Rating HS-25). The objective of this study was to evaluate the effectiveness of repairing a delaminated bridge deck by epoxy injection, specifically a bridge deck with a delaminated portland cement concrete overlay. Observations noted during the project lead to the following conclusions: The delaminations rebonded with epoxy have remained solid through five years. The percentage of delamination has stayed essentially the same for both the epoxy injected and non-repaired areas. Epoxy injection appears to be a practical, cost effective alternative to other forms of deck rehabilitation when undertaken at the proper time. Cost effectiveness would reduce dramatically if delayed until breakouts have occurred. On the other hand it would be a slow, labor intensive process if undertaken too early when delaminations are small.
Resumo:
The purpose of this project was to determine the feasibility of using pavement condition data collected for the Iowa Pavement Management Program (IPMP) as input to the Iowa Quadrennial Need Study. The need study, conducted by the Iowa Department of Transportation (Iowa DOT) every four years, currently uses manually collected highway infrastructure condition data (roughness, rutting, cracking, etc.). Because of the Iowa DOT's 10-year data collection cycles, condition data for a given highway segment may be up to 10 years old. In some cases, the need study process has resulted in wide fluctuations in funding allocated to individual Iowa counties from one study to the next. This volatility in funding levels makes it difficult for county engineers to plan and program road maintenance and improvements. One possible remedy is to input more current and less subjective infrastructure condition data. The IPMP was initially developed to satisfy the Intermodal Surface Transportation Efficiency Act (ISTEA) requirement that federal-aid-eligible highways be managed through a pavement management system. Currently all metropolitan planning organizations (MPOs) in Iowa and 15 of Iowa's 18 RPAs participate in the IPMP. The core of this program is a statewide data base of pavement condition and construction history information. The pavement data are collected by machine in two-year cycles. Using pilot areas, researchers examined the implications of using the automated data collected for the IPMP as input to the need study computer program, HWYNEEDS. The results show that using the IPMP automated data in HWYNEEDS is feasible and beneficial, resulting in less volatility in the level of total need between successive quadrennial need studies. In other words, the more current the data, the smaller the shift in total need.
Resumo:
The use of abrasives in winter maintenance is a well-established practice. The sand or other abrasive is intended to increase friction between vehicles and the (often snow or ice covered) pavement. In many agencies (and in many Iowa Counties, the focus of this study) the use of sand is a standard part of winter maintenance. Yet very little information exists on the value of sanding as a winter maintenance procedure. Some studies suggest that friction gains from sanding are minimal. In addition, there are increasing environmental concerns about sanding. These concerns focus on air quality and stormwater quality issues. This report reviews the state of the practice of abrasive usage in Iowa Counties, and classifies that usage according to its effectiveness. Possible changes in practice (with respect to abrasive usage) are presented and discussed.
Resumo:
The first phase of a two-phase research project was conducted to develop guidelines for Iowa transportation officials on the use of thin maintenance surfaces (TMS) for asphaltic concrete and bituminous roads. Thin maintenance surfaces are seal coats (chip seals), slurry seals, and micro-surfacing. Interim guidelines were developed to provide guidance on which roads are good candidates for TMS, when TMS should be placed, and what type of thin maintenance surface should be selected. The guidelines were developed specifically for Iowa aggregates, weather, traffic conditions, road user expectations, and transportation official expectations. In addition to interim guidelines, this report presents recommendations for phase-two research. It is recommended that test section monitoring continue and that further investigations be conducted regarding thin maintenance surface aggregate, additional test sections, placed, and a design method adopted for seal coats.