956 resultados para Madelung constant
Resumo:
The interaction of 10-hydroxycamptothecine (HCPT) with DNA under pseudo-physiological conditions (Tris-HCl buffer of pH 7.4), using ethidium bromide (EB) dye as a probe, was investigated with the use of spectrofluorimetry, UV-vis spectrometry and viscosity measurement. The binding constant and binding number for HCPT with DNA were evaluated as (7.1 ± 0.5) × 104 M-1 and 1.1, respectively, by multivariate curve resolution-alternating least squares (MCR-ALS). Moreover, parallel factor analysis (PARAFAC) was applied to resolve the three-way fluorescence data obtained from the interaction system, and the concentration information for the three components of the system at equilibrium was simultaneously obtained. It was found that there was a cooperative interaction between the HCPT-DNA complex and EB, which produced a ternary complex of HCPT-DNA-EB. © 2011 Elsevier B.V.
Resumo:
Experiments were undertaken to study effect of initial conditions on the expansion ratio of two grains in a laboratory scale, single speed, single screw extruder at Naresuan University, Thailand. Jasmine rice and Mung bean were used as the material. Three different initial moisture contents were adjusted for the grains and classified them into three groups according to particle sizes. Mesh sizes used are 12 and 14. Expansion ratio was measured at a constant barrel temperature of 190oC. Response surface methodology was used to obtain optimum conditions between moisture content and particle size of the materials concerned.
Resumo:
An existing model for solvent penetration and drug release from a spherically-shaped polymeric drug delivery device is revisited. The model has two moving boundaries, one that describes the interface between the glassy and rubbery states of polymer, and another that defines the interface between the polymer ball and the pool of solvent. The model is extended so that the nonlinear diffusion coefficient of drug explicitly depends on the concentration of solvent, and the resulting equations are solved numerically using a front-fixing transformation together with a finite difference spatial discretisation and the method of lines. We present evidence that our scheme is much more accurate than a previous scheme. Asymptotic results in the small-time limit are presented, which show how the use of a kinetic law as a boundary condition on the innermost moving boundary dictates qualitative behaviour, the scalings being very different to the similar moving boundary problem that arises from modelling the melting of an ice ball. The implication is that the model considered here exhibits what is referred to as ``non-Fickian'' or Case II diffusion which, together with the initially constant rate of drug release, has certain appeal from a pharmaceutical perspective.
Resumo:
Firstly, the authors would like to thank the editor for the opportunity to respond to Dr Al-Azri’s and Dr Al-Maniri’s letter. Secondly, while the current authors also accept that deterrence-based approaches should act as only one corner-stone of a suite of interventions and public policy initiatives designed to improve road safety, deterrence-based approaches have nonetheless consistently proven to be a valuable resource to improve road safety. Dr Al-Azri and Dr Al-Maniri reinforce their assertion about the limited utility of deterrence by citing drink driving research, and the issue of drink driving is particularly relevant within the current context given that the problem of driving after drinking has historically been addressed through deterrence-based approaches. While the effectiveness of deterrence-based approaches to reduce drink driving will always be dependent upon a range of situational and contextual factors (including police enforcement practices, cultural norms, etc), the utilisation of this approach has proven particularly effective within Queensland, Australia. For example, a relatively recent comprehensive review of Random Breath Testing in Queensland demonstrated that this initiative not only had a deterrent impact upon self-reported intentions to drink and drive, but was also found to have significantly reduced alcohol-related fatalities in the state. However, the authors agree that deterrence-based approaches can be particularly transient and thus require constant “topping up” not least through sustained public reinforcement, which was clearly articulated in the seminal work by Homel.
Resumo:
Competitive sailing is characterised by continuous interdependencies of decisions and actions. All actions imply a permanent monitoring of the environmental conditions, such as intensity and direction of the wind, sea characteristics, and the behaviour of the opponent sailors. These constraints on sailors’ behavior are in constant change implying continuous adjustments in sailors’ actions and decisions. Among the different parts of a regatta, tactics and strategy at the start are particularly relevant. Among coaches there is an adage that says that “the start is 50% of a regatta” (Houghton, 1984; Saltonstall, 1983/1986). Olympic sailing regattas are performed with boats of the same class, by one, two or three sailors, depending on the boat class. Normally before the start, sailors visit the racing venue and analyse wind and sea characteristics, in order to fine- tune their boats accordingly. Then, five minutes before the start, sailors initiate starting procedures in order to be in a favourable position at the starting line (at the “second zero”). This position is selected during the start period according to wind shifts tendencies and the actions of other boats (Figure 11.1). Only after the start signal can the boats cross the imaginary starting line between the race committee signal boat “A” and the pin end boat. The start takes place against the wind (upwind), and the boats start racing in the direction of mark 1. Based on the evaluation of the sea and wind characteristics (e.g. if the wind is stronger at a particular place on the course), sailors re- adjust their strategy for the regatta. This strategy may change during the regatta, according to wind changes and adversary actions. More to the point, strategic decisions constrain and are constrained by on- line decisions during the regatta.
Resumo:
A basic understanding of the relationships between rainfall intensity, duration of rainfall and the amount of suspended particles in stormwater runoff generated from road surfaces has been gained mainly from past washoff experiments using rainfall simulators. Simulated rainfall was generally applied at constant intensities, whereas rainfall temporal patterns during actual storms are typically highly variable. This paper discusses a rationale for the application of the constant-intensity washoff concepts to actual storm event runoff. The rationale is tested using suspended particle load data collected at a road site located in Toowoomba, Australia. Agreement between the washoff concepts and measured data is most consistent for intermediate-duration storms (duration <5 h and >1 h). Particle loads resulting from these storm events increase linearly with average rainfall intensity. Above a threshold intensity, there is evidence to suggest a constant or plateau particle load is reached. The inclusion of a peak discharge factor (maximum 6 min rainfall intensity) enhances the ability to predict particle loads.
Resumo:
We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.
Resumo:
It is well known that track defects cause profound effects to the dynamics of railway wagons; normally such problems are examined for cases of wagons running at a constant speed. Brake/traction torques affect the speed profile due to the wheel–rail contact characteristics but most of the wagon–track interaction models do not explicitly consider them in simulation. The authors have recently published a model for the dynamics of wagons subject to braking traction torques on a perfect track by explicitly considering the pitch degree of freedom for wheelsets. The model is extended for cases of lateral and vertical track geometry defects and worn railhead and wheel profiles. This paper presents the results of the analyses carried out using the model extended to the dynamics of wagons containing less ideal wheel profiles running on tracks with geometry defects and worn rails.
Resumo:
The natural convection thermal boundary layer adjacent to an inclined flat plate subject to sudden heating and a temperature boundary condition which follows a ramp function up until a specified time and then remains constant is investigated. The development of the flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. Different flow regimes based on the Rayleigh number are discussed with numerical results for both boundary conditions. For ramp heating, the boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating.
Resumo:
A fundamental study of the fluid dynamics inside an attic shaped triangular enclosure with cold upper walls and adiabatic horizontal bottom wall is reported in this study. The transient behaviour of the attic fluid which is relevant to our daily life is examined based on a scaling analysis. The transient phenomenon begins with the instantaneous cooling and the cooling with linear decreases of temperature up to some specific time (ramp time) and then maintain constant of the upper sloped walls. It is shown that both inclined walls develop a thermal boundary layer whose thicknesses increase towards steady-state or quasi-steady values. A proper identification of the timescales, the velocity and the thickness relevant to the flow that develops inside the cavity makes it possible to predict theoretically the basic flow features that will survive once the thermal flow in the enclosure reaches a steady state. A time scale for the cooling-down of the whole cavity together with the heat transfer scales through the inclined walls has also been obtained through scaling analysis. All scales are verified by the numerical simulations.
Resumo:
Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGCs) in the eye transmit the environmental light level, projecting to the suprachiasmatic nucleus (SCN) (Berson, Dunn & Takao, 2002; Hattar, Liao, Takao, Berson & Yau, 2002), the location of the circadian biological clock, and the olivary pretectal nucleus (OPN) of the pretectum, the start of the pupil reflex pathway (Hattar, Liao, Takao, Berson & Yau, 2002; Dacey, Liao, Peterson, Robinson, Smith, Pokorny, Yau & Gamlin, 2005). The SCN synchronizes the circadian rhythm, a cycle of biological processes coordinated to the solar day, and drives the sleep/wake cycle by controlling the release of melatonin from the pineal gland (Claustrat, Brun & Chazot, 2005). Encoded photic input from ipRGCs to the OPN also contributes to the pupil light reflex (PLR), the constriction and recovery of the pupil in response to light. IpRGCs control the post-illumination component of the PLR, the partial pupil constriction maintained for > 30 sec after a stimulus offset (Gamlin, McDougal, Pokorny, Smith, Yau & Dacey, 2007; Kankipati, Girkin & Gamlin, 2010; Markwell, Feigl & Zele, 2010). It is unknown if intrinsic ipRGC and cone-mediated inputs to ipRGCs show circadian variation in their photon-counting activity under constant illumination. If ipRGCs demonstrate circadian variation of the pupil response under constant illumination in vivo, when in vitro ipRGC activity does not (Weng, Wong & Berson, 2009), this would support central control of the ipRGC circadian activity. A preliminary experiment was conducted to determine the spectral sensitivity of the ipRGC post-illumination pupil response under the experimental conditions, confirming the successful isolation of the ipRGC response (Gamlin, et al., 2007) for the circadian experiment. In this main experiment, we demonstrate that ipRGC photon-counting activity has a circadian rhythm under constant experimental conditions, while direct rod and cone contributions to the PLR do not. Intrinsic ipRGC contributions to the post-illumination pupil response decreased 2:46 h prior to melatonin onset for our group model, with the peak ipRGC attenuation occurring 1:25 h after melatonin onset. Our results suggest a centrally controlled evening decrease in ipRGC activity, independent of environmental light, which is temporally synchronized (demonstrates a temporal phase-advanced relationship) to the SCN mediated release of melatonin. In the future the ipRGC post-illumination pupil response could be developed as a fast, non-invasive measure of circadian rhythm. This study establishes a basis for future investigation of cortical feedback mechanisms that modulate ipRGC activity.
Resumo:
The John Lewis Partnership was founded in 1929 as an “experiment in industrial democracy” (Lewis, 1948). This thesis explores the meaning of democracy in the Partnership and examines the wider implications of the case. It argues that democracy in work should be viewed as something which is intrinsically valuable because of its connection to furthering justice, equality, freedom and the rights and interests of all workers. The thesis makes three main contributions. Firstly, the production of a historically situated exploration of democratic participation in the John Lewis Partnership – the largest co-owned business in the UK. Secondly, an analysis of power relations in the organisation and an examination of the ways in which disciplinary power and regimes of truth both constrain democratic practice and offer the potential for resistance and challenge. Thirdly, the thesis challenges critics of the Partnership who have dismissed it as a form of “pseudo democracy” (Pateman, 1970: 73) and “suffocatingly paternalistic” (Ramsay, 1980: 52). Despite the constant threat of degeneration and dilution of the value framework laid down by the founder, the Partnership’s continued commitment to democratic participation provides an important contribution to our understanding of co-ownership and democratically organised forms of work. The analysis shows that management have attempted to direct and define democracy in a highly constrained way, assigning it an instrumental purpose, and privileging the ‘business case’ for democratic engagement. However, the study emphasises that the meaning of democracy is heavily contested and fraught with contradictions and paradoxes. This creates a space in which understandings of equality, solidarity and democracy are debated by the 69,000 employees who are co-owners of the business.
Resumo:
An investigation of the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a temperature boundary condition which follows a ramp function up until some specified time and then remains constant is reported. The development of the flow from start-up to a steadystate has been described based on scaling analyses and verified by numerical simulations. Attention in this study has been given to fluids having a Prandtl number Pr less than unity. The boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating.