913 resultados para METAL-ION
Resumo:
We report the crystal structures of the copper and nickel complexes of RNase A. The overall topology of these two complexes is similar to that of other RNase A structures. However, there are significant differences in the mode of binding of copper and nickel. There are two copper ions per molecule of the protein, but there is only one nickel ion per molecule of the protein. Significant changes occur in the interprotein interactions as a result of differences in the coordinating groups at the common binding site around His-105. Consequently, the copper- and nickel-ion-bound dimers of RNase A act as nucleation sites for generating different crystal lattices for the two complexes. A second copper ion is present at an active site residue His-119 for which all the ligands are from one molecule of the protein. At this second site, His-119 adopts an inactive conformation (B) induced by the copper. We have identified a novel copper binding motif involving the α-amino group and the N-terminal residues.
Resumo:
Reconstructing the history of ambient levels of metals by using tree-ring chemistry is controversial. This controversy can be resolved in part through the use of selective microanalysis of individual wood cells. Using a combination of instrumental neutron activation analysis and secondary ion mass spectrometry, we have observed systematic inhomogeneity in the abundance of toxic metals (Cr, As, Cd, and Pb) within annual growth rings of Quercus rubra (red oak) and have characterized individual xylem members responsible for introducing micrometer-scale gradients in toxic metal abundances. These gradients are useful for placing constraints on both the magnitude and the mechanism of heavy metal translocation within growing wood. It should now be possible to test, on a metal-by-metal basis, the suitability of using tree-ring chemistries for deciphering long-term records of many environmental metals.
Resumo:
The objectives of this and the following paper are to identify commonalities and disparities of the extended environment of mononuclear metal sites centering on Cu, Fe, Mn, and Zn. The extended environment of a metal site within a protein embodies at least three layers: the metal core, the ligand group, and the second shell, which is defined here to consist of all residues distant less than 3.5 Å from some ligand of the metal core. The ligands and second-shell residues can be characterized in terms of polarity, hydrophobicity, secondary structures, solvent accessibility, hydrogen-bonding interactions, and membership in statistically significant residue clusters of different kinds. Findings include the following: (i) Both histidine ligands of type I copper ions exclusively attach the Nδ1 nitrogen of the histidine imidazole ring to the metal, whereas histidine ligands for all mononuclear iron ions and nearly all type II copper ions are ligated via the Nɛ2 nitrogen. By contrast, multinuclear copper centers are coordinated predominantly by histidine Nɛ2, whereas diiron histidine contacts are predominantly Nδ1. Explanations in terms of steric differences between Nδ1 and Nɛ2 are considered. (ii) Except for blue copper (type I), the second-shell composition favors polar residues. (iii) For blue copper, the second shell generally contains multiple methionine residues, which are elements of a statistically significant histidine–cysteine–methionine cluster. Almost half of the second shell of blue copper consists of solvent-accessible residues, putatively facilitating electron transfer. (iv) Mononuclear copper atoms are never found with acidic carboxylate ligands, whereas single Mn2+ ion ligands are predominantly acidic and the second shell tends to be mostly buried. (v) The extended environment of mononuclear Fe sites often is associated with histidine–tyrosine or histidine–acidic clusters.
Resumo:
In the last decades, an increasing interest in the research field of wide bandgap semiconductors was observed, mostly due to the progressive approaching of silicon-based devices to their theoretical limits. 4H-SiC is an example among these, and is a mature compound for applications. The main advantages offered 4H-SiC in comparison with silicon are an higher breakdown field, an higher thermal conductivity, a higher operating temperature, very high hardness and melting point, biocompatibility, but also low switching losses in high frequencies applications and lower on-resistances in unipolar devices. Then, 4H-SiC power devices offer great performance improvement; moreover, they can work in hostile environments where silicon power devices cannot function. Ion implantation technology is a key process in the fabrication of almost all kinds of SiC devices, owing to the advantage of a spatially selective doping. This work is dedicated to the electrical investigation of several differently-processed 4H-SiC ion- implanted samples, mainly through Hall effect and space charge spectroscopy experiments. It was also developed the automatic control (Labview) of several experiments. In the work, the effectiveness of high temperature post-implant thermal treatments (up to 2000°C) were studied and compared considering: (i) different methods, (ii) different temperatures and (iii) different duration of the annealing process. Preliminary p + /n and Schottky junctions were also investigated as simple test devices. 1) Heavy doping by ion implantation of single off-axis 4H-SiC layers The electrical investigation is one of the most important characterization of ion-implanted samples, which must be submitted to mandatory post-implant thermal treatment in order to both (i) recover the lattice after ion bombardment, and (ii) address the implanted impurities into lattice sites so that they can effectively act as dopants. Electrical investigation can give fundamental information on the efficiency of the electrical impurity activation. To understand the results of the research it should be noted that: (a) To realize good ohmic contacts it is necessary to obtain spatially defined highly doped regions, which must have conductivity as low as possible. (b) It has been shown that the electrical activation efficiency and the electrical conductivity increase with the annealing temperature increasing. (c) To maximize the layer conductivity, temperatures around 1700°C are generally used and implantation density high till to 10 21 cm -3 . In this work, an original approach, different from (c), is explored by the using very high annealing temperature, around 2000°C, on samples of Al + -implant concentration of the order of 10 20 cm -3 . Several Al + -implanted 4H-SiC samples, resulting of p-type conductivity, were investigated, with a nominal density varying in the range of about 1-5∙10 20 cm -3 and subjected to two different high temperature thermal treatments. One annealing method uses a radiofrequency heated furnace till to 1950°C (Conventional Annealing, CA), the other exploits a microwave field, providing a fast heating rate up to 2000°C (Micro-Wave Annealing, MWA). In this contest, mainly ion implanted p-type samples were investigated, both off-axis and on-axis <0001> semi-insulating 4H-SiC. Concerning p-type off-axis samples, a high electrical activation of implanted Al (50-70%) and a compensation ratio below 10% were estimated. In the work, the main sample processing parameters have been varied, as the implant temperature, CA annealing duration, and heating/cooling rates, and the best values assessed. MWA method leads to higher hole density and lower mobility than CA in equivalent ion implanted layers, resulting in lower resistivity, probably related to the 50°C higher annealing temperature. An optimal duration of the CA treatment was estimated in about 12-13 minutes. A RT resistivity on the lowest reported in literature for this kind of samples, has been obtained. 2) Low resistivity data: variable range hopping Notwithstanding the heavy p-type doping levels, the carrier density remained less than the critical one required for a semiconductor to metal transition. However, the high carrier densities obtained was enough to trigger a low temperature impurity band (IB) conduction. In the heaviest doped samples, such a conduction mechanism persists till to RT, without significantly prejudice the mobility values. This feature can have an interesting technological fall, because it guarantee a nearly temperature- independent carrier density, it being not affected by freeze-out effects. The usual transport mechanism occurring in the IB conduction is the nearest neighbor hopping: such a regime is effectively consistent with the resistivity temperature behavior of the lowest doped samples. In the heavier doped samples, however, a trend of the resistivity data compatible with a variable range hopping (VRH) conduction has been pointed out, here highlighted for the first time in p-type 4H-SiC. Even more: in the heaviest doped samples, and in particular, in those annealed by MWA, the temperature dependence of the resistivity data is consistent with a reduced dimensionality (2D) of the VRH conduction. In these samples, TEM investigation pointed out faulted dislocation loops in the basal plane, whose average spacing along the c-axis is comparable with the optimal length of the hops in the VRH transport. This result suggested the assignment of such a peculiar behavior to a kind of spatial confinement into a plane of the carrier hops. 3) Test device the p + -n junction In the last part of the work, the electrical properties of 4H-SiC diodes were also studied. In this case, a heavy Al + ion implantation was realized on n-type epilayers, according to the technological process applied for final devices. Good rectification properties was shown from these preliminary devices in their current-voltage characteristics. Admittance spectroscopy and deep level transient spectroscopy measurements showed the presence of electrically active defects other than the dopants ones, induced in the active region of the diodes by ion implantation. A critical comparison with the literature of these defects was performed. Preliminary to such an investigation, it was assessed the experimental set up for the admittance spectroscopy and current-voltage investigation and the automatic control of these measurements.
Resumo:
Metal-complex ionosilicas with cationic complexes into the mesoporous silica framework were prepared using anionic surfactants. The electrostatic interaction between the anionic surfactant and the cationic metal complexes incorporated in the silica framework allows for the fine tuning of the mesoporous structure. The gentle procedure of synthesis developed and mild ion-exchange extraction of the surfactant, allowed a cleaner route for the immobilization of homogeneous cationic catalysts in mesoporous silica, while protecting the structural and chemical integrity of the metal complexes.
Resumo:
An increase in whole ocean alkalinity during glacial periods could account, in part, for the drawdown of atmospheric CO2 into the ocean. Such an increase was inevitable due to the near elimination of shelf area for the burial of coral reef alkalinity. We present evidence, based on down-core measurements of benthic foraminiferal B/Ca and Mg/Ca from a core in the Weddell Sea, that the deep ocean carbonate ion concentration, [CO3 2-], was elevated by ~25 µmol/kg during each glacial period of the last 800 kyrs. The heterogeneity of the preservation histories in the different ocean basins reflects control of the carbonate chemistry of the deep glacial ocean in the Atlantic and Pacific by the changing ventilation and chemistry of Weddell Sea waters. These waters are more corrosive than interglacial northern sourced waters, but not as undersaturated as interglacial southern sourced waters. Our inferred increase in whole ocean alkalinity can be reconciled with reconstructions of glacial saturation horizon depth and the carbonate budget, if carbonate burial rates also increased above the saturation horizon as a result of enhanced pelagic calcification. The Weddell records display low [CO3 2-] during deglaciations and peak interglacial warmth, coincident with maxima in %CaCO3 in the Atlantic and Pacific Oceans. Should the burial rate of alkalinity in the more alkaline glacial deepwaters outstrip the rate of alkalinity supply, then pelagic carbonate production by the coccolithophores, at the end of the glacial maximum could drive a decrease in ocean [CO3 2-] and act to trigger the deglacial rise in pCO2.
Resumo:
Short peptides corresponding to two to four a-helical turns of proteins are not thermodynamically stable helices in water. Unstructured octapeptide Ac-His1*-Ala2-Ala3-His4*-His5*-Glu6-Leu7-His8*-NH2 (1) reacts with two [Pd ((NH2)-N-15(CH2)(2) (NH2)-N-15)(NO3)(2)] in water to form a kinetically stable intermediate, [{Pden}(2)-{(1,4)(5,8)-peptide}](2), in which two 19-membered metallocyclic rings stabilize two peptide turns. Slow subsequent folding to a thermodynamically more stable two-turn a-helix drives the equilibrium to [{Pden}(2)-{(1,5)(4,8)-peptide}] (3), featuring two 22-membered rings. This transformation from unstructured peptide via turns to an a-helix suggests that metal clips might be useful probes for investigating peptide folding.
Resumo:
The levels of Mn, Cu, zn, Mg and Ca were measured in the lichens Xanthoparmelia conspersa (Ach.) Hale and Parmelia glabratula ssp. fuliginosa (Fr. ex Duby): Laund. growing on a steep slate rock surface in south Gwynedd, Wales, UK. The objective was to test the following hypotheses: 1) that foliose lichens growing in a rural environment concentrate metal ions relative to the substratum, 2) that the concentration of metal ions increases significantly with thallus size and 3) that individual ions accumulate preferentially either in the marginal lobes or thallus centre. Mg and Ca were present in rainfall whereas all ions were present in rock surface runoff and in the substratum. Levels of Mn, Mg and Ca were increased in runoff collected from the bottom compared with the top of the rock surface. In P. glabratula ssp. fuliginosa thalli, ions were present as follows, Mg > Ca=Mn=Zn>Cu, and there were no significant differences in thalli collected from the top and bottom of the rock surface. With the exception of Mg and Ca, ion levels in thalli were similar to or less than those in the substratum. The levels of Ca, Cu and Zn were similar in thalli from under 1 to over 4 cm in diameter. However, the level of Mg increased with thallus size in X. conspersa while the level of Mn decreased with thallus size in both species. Ion levels were similar in the marginal lobes and centres of large diameter (over 4 cm) and small diameter (under 2 cm) X. conspersa thalli. With the exception of Mg, there was no evidence for a significant accumulation of ions relative to the substratum or with thallus size. In addition, there was no evidence to suggest preferential accumulation of ions either in the thallus centre or marginal lobes.
Resumo:
The present study investigates the effect of different sample preparation methods on the pyrolysis behaviour of metal-added biomass; Willow samples were compared in the presence of two salts of zinc and lead containing sulphate and nitrate anions which were added to the wood samples with three different techniques as dry-mixing, impregnation and ion-exchange. The effect of acid and water wash as common demineralisation pre-treatments were also analysed to evaluate their roles in the thermal degradation of the biomass. Results from thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and pyrolysis-mass spectrometry (Py-MS) measurements indicated that these pre-treatments change the matrix and the physical-chemical properties of wood. Results suggested that these structural changes increase the thermal stability of cellulose during pyrolysis. Sample preparation was also found to be a crucial factor during pyrolysis; different anions of metal salts changed the weight loss rate curves of wood material, which indicates changes in the primary degradation process of the biomass. Results also showed that dry-mixing, impregnation or ion-exchange influence the thermal behaviour of wood in different ways when a chosen metal salt was and added to the wood material. © 2011 Elsevier B.V. All rights reserved.
Resumo:
The most perfectly structured metal surface observed in practice is that of a field evaporated field-ion microscope specimen. This surface has been characterised by adopting various optical analogue techniques. Hence a relationship has been determined between the structure of a single plane on the surface of a field-ion emitter and the geometry of a binary zone plate. By relating the known focussing properties of such a zone plate to those obtained from the projected images of such planes in a field-ion micrograph, it is possible to extract new information regarding the local magnification of the image. Further to this, it has been shown that the entire system of planes comprising the field-ion imaging surface may be regarded as a moire pattern formed between over-lapping zone plates. The properties of such moire zone plates are first established in an analysis of the moire pattern formed between zone plates on a flat surface. When these ideas are applied to the field-ion image it becomes possible to deduce further information regarding the precise topography of the emitter. It has also become possible to simulate differently proJected field-ion images by overlapping suitably aberrated zone plates. Low-energy ion bombardment is an essential preliminary to much surface research as a means of producing chemically clean surfaces. Hence it is important to know the nature and distribution of the resultant lattice damage, and the extent to which it may be removed by annealing. The field-ion microscope has been used to investigate such damage because its characterisation lies on the atomic scale. The present study is concerned with the in situ sputtering of tungsten emitters using helium, neon, argon and xenon ions with energies in the range 100eV to 1keV, together with observations of the effect of annealing. The relevance of these results to surface cleaning schedules is discussed.
Resumo:
The reactivity of Amberlite (IRA-67) base "heterogeneous" resin in Sonogashira cross-coupling of 8-bromoguanosine 1 with phenylacetylene 3 to give 2 has been examined. Both 1 and 2 coordinate to Pd and Cu ions, which explains why at equivalent catalyst loadings, the homogeneous reaction employing triethylamine base is poor yielding. X-ray photo-electron spectroscopy (XPS) has been used to probe and quantify the active nitrogen base sites of the Amberlite resin, and postreaction Pd and Cu species. The Pd2Cl3(PPh)2 precatalyst and CuI cocatalyst degrade to give Amberlite-supported metal nanoparticles (average size ∼2.7 nm). The guanosine product 2 formed using the Amberlite Pd/Cu catalyst system is of higher purity than reactions using a homogeneous Pd precatalyst, a prerequisite for use in biological applications. Copyright © Taylor and Francis Group, LLC.
Resumo:
Materials that combine photoluminescence, optical transparency and facile processability are of high importance in many applications. This article reports on the development of photoluminescent poly(methyl methacrylate) materials based on novel highly emissive anionic molybdenum cluster complex [{Mo6I8}(OTs)6]2– (where OTs– is the p-toluenesulfonate ion). The materials were obtained by both solution and bulk copolymerisation of methyl methacrylate and (dMDAEMA)2[{Mo6I8}(OTs)6], where dMDAEMA+ is the polymerisable cation [2-(methacryloyloxy)ethyl]dimethyl-dodecylammonium. Evaluation of the resultant hybrid materials showed that one could combine the excellent photoluminescent properties of the cluster complex with the transparency and processability of PMMA.
Resumo:
Structure, energetics and reactions of ions in the gas phase can be revealed by mass spectrometry techniques coupled to ions activation methods. Ions can gain enough energy for dissociation by absorbing IR light photons introduced by an IR laser to the mass spectrometer. Also collisions with a neutral molecule can increase the internal energy of ions and provide the dissociation threshold energy. Infrared multiple photon dissociation (IRMPD) or sustained off-resonance irradiation collision-induced dissociation (SORI-CID) methods are combined with Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometers where ions can be held at low pressures for a long time. The outcome of ion activation techniques especially when it is compared to the computational methods results is of great importance since it provides useful information about the structure, thermochemistry and reactivity of ions of interest. In this work structure, energetics and reactivity of metal cation complexes with dipeptides are investigated. Effect of metal cation size and charge as well as microsolvation on the structure of these complexes has been studied. Structures of bare and hydrated Na and Ca complexes with isomeric dipeptides AlaGly and GlyAla are characterized by means of IRMPD spectroscopy and computational methods. At the second step unimolecular dissociation reactions of singly charged and doubly charged multimetallic complexes of alkaline earth metal cations with GlyGly are examined by CID method. Also structural features of these complexes are revealed by comparing their IRMPD spectra with calculated IR spectra of possible structures. At last the unimolecular dissociation reactions of Mn complexes are studied. IRMPD spectroscopy along with computational methods is also employed for structural elucidation of Mn complexes. In addition the ion-molecule reactions of Mn complexes with CO and water are explored in the low pressures obtained in the ICR cell.
Resumo:
The Ming deposit, Newfoundland Appalachians, is a metamorphosed (upper greenschist to lower amphibolite facies), Cambro-Ordovician, bimodalmafic volcanogenic massive sulfide (VMS) deposit that consists of several, spatially-associated, elongated orebodies composed of stratabound semimassive to massive sulfides and/or discordant sulfide stringers in a rhyodacitic footwall. Copper is the main commodity; however, the deposit contains precious metal-bearing zones with elevated Au grades. In this study, field observations, microscopy, and micro-analytical tools including electron microprobe, laser ablation inductively coupled plasma mass spectrometry, and secondary ion mass spectrometry were used to constrain the relative timing of precious metal emplacement, the physico-chemical conditions of hydrothermal fluid precipitation, and the sources of sulfur, precious metals, semi-metals and metals. The ore mineral assemblage is complex and indicates an intermediate sulfidation state. Pyrite and chalcopyrite are the dominant ore minerals with minor sphalerite and pyrrhotite, and trace galena, arsenopyrite and cubanite. Additional trace phases include tellurides, NiSb phases, sulfosalts, electrum, AgHg±Au alloys, and oxides. Silver phases and precious metals occur predominantly in semi-massive and massive sulfides as free grains, and as grains spatially associated with arsenopyrite and/or sulfosalts. Precious metal phases occurring between recrystallized pyrite and within cataclastic pyrite are rare. Hence, the complex ore assemblage and textures strongly suggest syngenetic precious metal emplacement, whereas metamorphism and deformation only internally and locally remobilized precious metal phases. The ore assemblage formed from reduced, acidic hydrothermal fluids over a range of temperatures (≈350 to below 260ºC). The abundance of telluride and Ag-bearing tetrahedrite, however, varies strongly between the different orebodies indicating variable ƒTe₂, ƒSe₂, mBi, and mSb within the hydrothermal fluids. The variations in the concentrations of semi-metals and metals (As, Bi, Hg, Sb, Se, Te), as well as Au and Ag, were due to variations in temperature but also to a likely contribution of magmatic fluids into the VMS hydrothermal system from presumably different geothermal reservoirs. Sulfur isotope studies indicate at least two sulfur sources: sulfur from thermochemically-reduced seawater sulfate and igneous sulfur. The source of igneous sulfur is the igneous footwall, direct magmatic fluid/volatiles, or both. Upper greenschist to lower amphibolite metamorphic conditions and deformation had no significant effect on the sulfur isotope composition of the sulfides at the Ming deposit.
Resumo:
We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials