904 resultados para Lutjanidae. Mutton snapper. Dog snapper. Mitochondrial DNA.Population genetics
Resumo:
A simple way to quickly optimize microsatellites in nonmodel organisms is to reuse loci available in closely related taxa; however, this approach can be limited by the stochastic and low cross-amplification success experienced in some groups (e.g. amphibians). An efficient alternative is to develop loci from transcriptome sequences. Transcriptomic microsatellites have been found to vary in their levels of cross-species amplification and variability, but this has to date never been tested in amphibians. Here, we compare the patterns of cross-amplification and levels of polymorphism of 18 published anonymous microsatellites isolated from genomic DNA vs. 17 loci derived from a transcriptome, across nine species of tree frogs (Hyla arborea and Hyla cinerea group). We established a clear negative relationship between divergence time and amplification success, which was much steeper for anonymous than transcriptomic markers, with half-lives (time at which 50% of the markers still amplify) of 1.1 and 37 My, respectively. Transcriptomic markers are significantly less polymorphic than anonymous loci, but remain variable across diverged taxa. We conclude that the exploitation of amphibian transcriptomes for developing microsatellites seems an optimal approach for multispecies surveys (e.g. analyses of hybrid zones, comparative linkage mapping), whereas anonymous microsatellites may be more informative for fine-scale analyses of intraspecific variation. Moreover, our results confirm the pattern that microsatellite cross-amplification is greatly variable among amphibians and should be assessed independently within target lineages. Finally, we provide a bank of microsatellites for Palaearctic tree frogs (so far only available for H. arborea), which will be useful for conservation and evolutionary studies in this radiation.
Resumo:
Comparative analyses of spatial genetic structure of populations of plants and the insects they interact with provide an indication of how gene flow, natural selection and genetic drift may jointly influence the distribution of genetic variation and potential for local co-adaptation for interacting species. Here, we analysed the spatial scale of genetic structure within and among nine populations of an interacting species pair, the white campion Silene latifolia and the moth Hadena bicruris, along a latitudinal gradient across Northern/Central Europe. This dioecious, short-lived perennial plant inhabits patchy, often disturbed environments. The moth H. bicruris acts both as its pollinator and specialist seed predator that reproduces by laying eggs in S. latifolia flowers. We used nine microsatellite markers for S. latifolia and eight newly developed markers for H. bicruris. We found high levels of inbreeding in most populations of both plant and pollinator/seed predator. Among populations, significant genetic structure was observed for S. latifolia but not for its pollinator/seed predator, suggesting that despite migration among populations of H. bicruris, pollen is not, or only rarely, carried over between populations, thus maintaining genetic structure among plant populations. There was a weak positive correlation between genetic distances of S. latifolia and H. bicruris. These results indicate that while significant structure of S. latifolia populations creates the potential for differentiation at traits relevant for the interaction with the pollinator/seed predator, substantial gene flow in H. bicruris may counteract this process in at least some populations.
Resumo:
The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes - a marker of the effective population size - in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.
Resumo:
UNLABELLED: CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM. IMPORTANCE: In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria.
Resumo:
Bark beetle outbreaks have a devastating effect on economically important forests worldwide, thus requiring extensive application of management control strategies. The presence of unmanaged protected areas in close proximity to managed forests can instigate concerns that bark beetle infestations may spread from unmanaged into managed stands. We studied the impact of differential management of forest stands on the dispersal dynamics of the European spruce bark beetle, Ips typographus, making use of inferential population genetics on mitochondrial and nuclear genomes. Bayesian inferences of migration rates and a most parsimonious dispersal tree show that outgoing gene flow was consistently higher from managed to unmanaged areas. Reason for that is likely the thorough removal of potential breeding material in managed forests and thus the dispersal of the base stock beetles from these areas to unmanaged areas where breeding material is available. Our study suggests that the potential threat posed by unmanaged to managed forests in regard to I. typographus infestation needs to be carefully re-considered.
Resumo:
Longline fisheries, oil spills, and offshore wind farms are some of the major threats increasing seabird mortality at sea, but the impact of these threats on specific populations has been difficult to determine so far. We tested the use of molecular markers, morphometric measures, and stable isotope (δ15N and δ13C) and trace element concentrations in the first primary feather (grown at the end of the breeding period) to assign the geographic origin of Calonectris shearwaters. Overall, we sampled birds from three taxa: 13 Mediterranean Cory's Shearwater (Calonectris diomedea diomedea) breeding sites, 10 Atlantic Cory's Shearwater (Calonectris diomedea borealis) breeding sites, and one Cape Verde Shearwater (C. edwardsii) breeding site. Assignment rates were investigated at three spatial scales: breeding colony, breeding archipelago, and taxa levels. Genetic analyses based on the mitochondrial control region (198 birds from 21 breeding colonies) correctly assigned 100% of birds to the three main taxa but failed in detecting geographic structuring at lower scales. Discriminant analyses based on trace elements composition achieved the best rate of correct assignment to colony (77.5%). Body measurements or stable isotopes mainly succeeded in assigning individuals among taxa (87.9% and 89.9%, respectively) but failed at the colony level (27.1% and 38.0%, respectively). Combining all three approaches (morphometrics, isotopes, and trace elements on 186 birds from 15 breeding colonies) substantially improved correct classifications (86.0%, 90.7%, and 100% among colonies, archipelagos, and taxa, respectively). Validations using two independent data sets and jackknife cross-validation confirmed the robustness of the combined approach in the colony assignment (62.5%, 58.8%, and 69.8% for each validation test, respectively). A preliminary application of the discriminant model based on stable isotope δ15N and δ13C values and trace elements (219 birds from 17 breeding sites) showed that 41 Cory's Shearwaters caught by western Mediterranean long-liners came mainly from breeding colonies in Menorca (48.8%), Ibiza (14.6%), and Crete (31.7%). Our findings show that combining analyses of trace elements and stable isotopes on feathers can achieve high rates of correct geographic assignment of birds in the marine environment, opening new prospects for the study of seabird mortality at sea.
Resumo:
Background It is well known that the pattern of linkage disequilibrium varies between human populations, with remarkable geographical stratification. Indirect association studies routinely exploit linkage disequilibrium around genes, particularly in isolated populations where it is assumed to be higher. Here, we explore both the amount and the decay of linkage disequilibrium with physical distance along 211 gene regions, most of them related to complex diseases, across 39 HGDP-CEPH population samples, focusing particularly on the populations defined as isolates. Within each gene region and population we use r2 between all possible single nucleotide polymorphism (SNP) pairs as a measure of linkage disequilibrium and focus on the proportion of SNP pairs with r2 greater than 0.8. Results Although the average r2 was found to be significantly different both between and within continental regions, a much higher proportion of r2 variance could be attributed to differences between continental regions (2.8% vs. 0.5%, respectively). Similarly, while the proportion of SNP pairs with r2 > 0.8 was significantly different across continents for all distance classes, it was generally much more homogenous within continents, except in the case of Africa and the Americas. The only isolated populations with consistently higher LD in all distance classes with respect to their continent are the Kalash (Central South Asia) and the Surui (America). Moreover, isolated populations showed only slightly higher proportions of SNP pairs with r2 > 0.8 per gene region than non-isolated populations in the same continent. Thus, the number of SNPs in isolated populations that need to be genotyped may be only slightly less than in non-isolates. Conclusion The 'isolated population' label by itself does not guarantee a greater genotyping efficiency in association studies, and properties other than increased linkage disequilibrium may make these populations interesting in genetic epidemiology.
Resumo:
Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.
Resumo:
Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.
Resumo:
This study aimed to evaluate the genetic variability among individuals of a base population of Eucalyptus grandis and to build a molecular marker database for the analyzed populations. The Eucalyptus grandis base population comprised 327 individuals from Coff's Harbour, Atherton and Rio Claro. A few plants came from other sites (Belthorpe MT. Pandanus, Kenilworth, Yabbra, etc.). Since this base population had a heterogeneous composition, the groups were divided according to geographic localization (latitude and longitude), and genetic breeding level. Thus, the influence of those two factors (geographic localization and genetic breeding level) on the genetic variability detected was discussed. The RAPD technique allowed the evaluation of 70 loci. The binary matrix was used to estimate the genetic similarity among individuals using Jaccard's Coefficient. Parametric statistical tests were used to compare within-group similarity of the means. The obtained results showed that the base population had wide genetic variability and a mean genetic similarity of 0.328. Sub-group 3 (wild materials from the Atherton region) showed mean genetic similarity of 0.318. S.P.A. (from Coff's Harbour region) had a mean genetic similarity of 0.322 and was found to be very important for maintenance of variation in the base population. This can be explained since the individuals from those groups accounted for most of the base population (48.3% for it). The base population plants with genetic similarity higher than 0.60 should be phenotypically analyzed again in order to clarify the tendency of genetic variability during breeding programs.
Resumo:
Background: The m.3243A>G mutation in mitochondrial DNA is the most common cause for mitochondrial diabetes. In addition, unexpected deaths related to the m.3243A>G associate with encephalopathy and cardiomyopathy. Failing mitochondrial respiratory chain in neurons, myocytes and beta cells is considered to underlie the multiorgan manifestations of the m.3243A>G. Aims: The primary aim of the study was to characterize the organ-specific glucose metabolism in patients with m.3243A>G and secondly, to study patients with or without signs of diabetes, cardiomyopathy or encephalopathy. The insulin-stimulated glucose metabolism in brain, heart, skeletal muscle, adipose tissue and liver were measured with 2-deoxy-2-[18F]fluoro-α-D-glucose in 15 patients and 14 controls. Brain oxygen metabolism was assessed with [15O]oxygen and insulin secretion was modelled based on oral glucose tolerance test. Results: The glucose oxidation in brain was globally decreased in patients with or without clinical encephalopathy. The insulin-stimulated glucose influx to skeletal muscle and adipose tissue was decreased in patients with or without diabetes as the hepatic glucose metabolism was normal. Impaired beta cell function and myocardial glucose uptake were associated with the high m.3243A>G heteroplasmy. Conclusions: This cross-sectional study suggests that: 1) The ability of insulin to stimulate glucose metabolism in skeletal muscle and adipose tissue is weakened before the beta cell failure results in mitochondrial diabetes. 2) Glucose oxidation defect is detected in otherwise unaffected cerebral regions in patients with the m.3243A>G, thus it likely precedes the clinical encephalopathy. 3) Uneconomical glucose hypometabolism during hyperinsulinemia contributes to the cardiac vulnerability in patients with high m.3243A>G heteroplasmy
Resumo:
Abnormal riboflavin status in the absence of a dietary deficiency was detected in 31 consecutive outpatients with Parkinson's disease (PD), while the classical determinants of homocysteine levels (B6, folic acid, and B12) were usually within normal limits. In contrast, only 3 of 10 consecutive outpatients with dementia without previous stroke had abnormal riboflavin status. The data for 12 patients who did not complete 6 months of therapy or did not comply with the proposed treatment paradigm were excluded from analysis. Nineteen PD patients (8 males and 11 females, mean age ± SD = 66.2 ± 8.6 years; 3, 3, 2, 5, and 6 patients in Hoehn and Yahr stages I to V) received riboflavin orally (30 mg every 8 h) plus their usual symptomatic medications and all red meat was eliminated from their diet. After 1 month the riboflavin status of the patients was normalized from 106.4 ± 34.9 to 179.2 ± 23 ng/ml (N = 9). Motor capacity was measured by a modification of the scoring system of Hoehn and Yahr, which reports motor capacity as percent. All 19 patients who completed 6 months of treatment showed improved motor capacity during the first three months and most reached a plateau while 5/19 continued to improve in the 3- to 6-month interval. Their average motor capacity increased from 44 to 71% after 6 months, increasing significantly every month compared with their own pretreatment status (P < 0.001, Wilcoxon signed rank test). Discontinuation of riboflavin for several days did not impair motor capacity and yellowish urine was the only side effect observed. The data show that the proposed treatment improves the clinical condition of PD patients. Riboflavin-sensitive mechanisms involved in PD may include glutathione depletion, cumulative mitochondrial DNA mutations, disturbed mitochondrial protein complexes, and abnormal iron metabolism. More studies are required to identify the mechanisms involved.
Resumo:
Two cytoplasmic, glucosamine resistant mutants of Saccharomyces cerevisiae, GR6 and GR10, were examined to determine whether or not the lesions involved were located on mitochondrial DNA. Detailed investigation of crosses of GR6 and GR10 or their derivatives to strains bearing known mitochondrial markers demonstrated that: 1. the frequency of glucos~~ine resistance in diploids was independent of factors influencing mitochondrial marker output. 2. upon tetrad analysis a variety of tetrad ratios was observed for glucosamine resistance whereas mitochondrial markers segregated 4:0 or 0:4 (resistant:sensitive). 3. glucosamine resistance and mitochondrial markers segregated differentially with time. 4. glucosamine resistance persisted following treatment of a GRIO derivative with ethidium bromide at concentrations high enough to eliminate all mitochondrial DNA. 5. haploid spore clones displayed two degrees of glucosamine resistance, weak and strong, while growth due to mitochondrial mutations was generally thick and confluent. 6. a number of glucosamine resistant diploids and haploids, which also possessed a mithchondrial resistance mutation, were unable to grow on medium containing both glucosamine and the particular drug involved. 3 These observations 1~ 6 provided strong evidence that the cytoplasmic glucosamine resistant mutations present in GR6 and GRiO were not situated on mitochondrial DNA. Comparison of the glucosamine resistance mutations to some other known cytoplasmic determinants revealed that: 7. glucosamine resistance and the expression of the killer phenotype were separate phenomena. 8. unlike yeast carrying resistance conferring episomes GR6 and GR10 were not resistant to venturicidin or oligomycin and the GR factor exhibited genetic behaviour different from that of the episomal determinants. These results 7--+8 suggested that glucosamine resistance was not associated with the killer determinant nor with alleged yeast episomes. It is therefore proposed that a yeast plasmid(s), previously undescribed, is responsible for glucosamine resistance. The evidence to date is compatible with the hypothesis that GR6 and GR10 carry allelic mutations of the same plasmid which is tentatively designated (GGM).
Resumo:
"Mémoire présenté à la faculté des études supérieures en vue de l'obtention du grade de maîtrise en droit (LL.M.) option droit, biotechnologies et société"
Resumo:
Cette étude vise à comparer l’histoire évolutive des parasitoïdes du genre Horismenus (Hymenoptera: Eulophidae) à celle de leurs hôtes bruches (Coleoptera: Bruchidae) et plante hôte (Phaseolus vulgaris L.) cultivée dans le contexte d’agriculture traditionnelle, au sein de son centre de domestication Mésoaméricain. Nous avons analysé la structure génétique de 23 populations de quatre espèces de parasitoïdes au Mexique, en utilisant un fragment du gène mitochondrial COI afin de les comparer aux structures précédemment publiées des hôtes bruches et du haricot commun. Nous avons prédit que les structures génétiques des populations d’hôtes (bruches et plante) et de parasitoïdes seraient similaires puisque également influencées par la migration entremise par l’humain (HMM) étant donnée que les parasitoïdes se développent telles que les bruches à l’intérieur des haricots. Compte tenu des stratégies de manipulation reproductive utilisées par l’alpha-protéobactérie endosymbionte Wolbachia spp. pour assurer sa transmission, la structure génétique des populations de parasitoïdes inférée à partir du génome mitochondrial devrait être altérée conséquemment à la transmission conjointe des mitochondries et des bactéries lors de la propagation de l’infection dans les populations de parasitoïdes. Les populations du parasitoïde H. missouriensis sont infectées par Wolbachia spp. Tel que prédit, ces populations ne sont pas différenciées (FST = 0,06), ce qui nous empêche d’inférer sur une histoire évolutive parallèle. Contrairement aux bruches, Acanthoscelides obtectus et A. ovelatus, la HMM n'est pas un processus contemporain qui influence la structure génétique des populations du parasitoïde H. depressus, étant donné la forte différenciation (FST = 0,34) qui existe entre ses populations. La structure génétique observée chez H. depressus est similaire à celle de sa plante hôte (i.e. dispersion aléatoire historique à partir d'un pool génique ancestral très diversifié) et est probablement le résultat d’un flux génique important en provenance des populations de parasitoïdes associées aux haricots spontanées à proximité des champs cultivés. L’étude de l’histoire évolutive intégrant plusieurs niveaux trophiques s’est avérée fructueuse dans la détection des différentes réponses évolutives entre les membres du module trophique face aux interactions humaines et parasitaires, et montre la pertinence d’analyser les systèmes écologiques dans leur ensemble.