994 resultados para Low latitudes
Resumo:
Chromolaena odorata (L.) King and Robinson (Siam weed) is a highly invasive plant and a high priority for control in north Queensland. It can be effectively treated using high-volume, groundbased herbicide spray equipment, but operational information shows that this control method becomes increasingly difficult in areas where vehicle access is prevented by rougher terrain. Low-volume, high-concentration herbicide applications have proven capable of causing high mortality in these remote situations. Two trials were undertaken between May 2010 and May 2012 to refine effective rates of aminopyralid/fluroxypyr, fluroxypyr and metsulfuron-methyl, only using low-volume, high-concentration applications on Siam weed. Fluroxypyr on its own was as effective as aminopyralid/fluroxypyr as both herbicides caused 95-100% mortality at overlapping rates containing 5 to 18.85 g a.i. L-1 of fluroxypyr. Metsulfuron-methyl caused 100% mortality when applied at 3 and 6 g a.i. L-1. Effective control was achieved with approximately 16 to 22 mL of the solutions per plant, so a 5 L mixture in a backpack could treat 170 to 310 adult plants. There are several options for treating Siam weed on the ground and the choice of methods reflects the area, plant density and accessibility of the infestation. Control information from Siam weed field crews shows that low volume, high concentration herbicide applications applied using a splatter gun are a more efficient method for controlling larger, denser remote infestations than physical removal. By identifying effective herbicides that are applied through low-volume equipment, these trials provide an additional and more efficient tool for controlling Siam weed in remote areas.
Resumo:
It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.
Resumo:
Immediate and residual effects of two lengths of low plane of nutrition (PON) on the synthesis of milk protein and protein fractions were studied at the Mutdapilly Research Station, in south-east Queensland. Thirty-six multiparous Holstein-Friesian cows, between 46 and 102 days in milk (DIM) initially, were used in a completely randomised design experiment with three treatments. All cows were fed on a basal diet of ryegrass pasture (7.0 kg DM/cow.day), barley-sorghum concentrate mix (2.7 kg DM/cow.day) and a canola meal-mineral mix (1.3 kg DM/cow.day). To increase PON, 5.0 kg DM/cow.day supplemental maize and forage sorghum silage was added to the basal diet. The three treatments were (C) high PON (basal diet + supplemental silage); (L9) low PON (basal diet only) for a period of 9 weeks; and (L3) low PON (basal diet only) for a period of 3 weeks. The experiment comprised three periods (1) covariate – high PON, all groups (5 weeks), (2) period of low PON for either 3 weeks (L3) or 9 weeks (L9), and (3) period of high PON (all groups) to assess ability of cows to recover any production lost as a result of treatments (5 weeks). The low PON treatment periods for L3 and L9 were end-aligned so that all treatment groups began Period 3 together. Although there was a significant effect of L9 on yields of milk, protein, fat and lactose, and concentrations of true protein, whey protein and urea, these were not significantly different from L3. There were no residual effects of L3 or L9 on protein concentration or nitrogen distribution after 5 weeks of realimentation. There was no significant effect of low PON for 3 or 9 weeks on casein concentration or composition.
Resumo:
Postglacial climate changes and vegetation responses were studied using a combination of biological and physical indicators preserved in lake sediments. Low-frequency trends, high-frequency events and rapid shifts in temperature and moisture balance were probed using pollen-based quantitative temperature reconstructions and oxygen-isotopes from authigenic carbonate and aquatic cellulose, respectively. Pollen and plant macrofossils were employed to shed light on the presence and response rates of plant populations in response to climate changes, particularly focusing on common boreal and temperate tree species. Additional geochemical and isotopic tracers facilitated the interpretation of pollen- and oxygen-isotope data. The results show that the common boreal trees were present in the Baltic region (~55°N) during the Lateglacial, which contrasts with the traditional view of species refuge locations in the south-European peninsulas during the glacial/interglacial cycles. The findings of this work are in agreement with recent paleoecological and genetic evidence suggesting that scattered populations of tree species persisted at higher latitudes, and that these taxa were likely limited to boreal trees. Moreover, the results demonstrate that stepwise changes in plant communities took place in concert with major climate fluctuations of the glacial/interglacial transition. Postglacial climate trends in northern Europe were characterized by rise, maxima and fall in temperatures and related changes in moisture balance. Following the deglaciation of the Northern Hemisphere and the early Holocene reorganization of the ice-ocean-atmosphere system, the long-term temperature trends followed gradually decreasing summer insolation. The early Holocene (~11,700-8000 cal yr BP) was overall cool, moist and oceanic, although the earliest Holocene effective humidity may have been low particularly in the eastern part of northern Europe. The gradual warming trend was interrupted by a cold event ~8200 cal yr BP. The maximum temperatures, ~1.5-3.0°C above modern values, were attained ~8000-4000 cal yr BP. This mid-Holocene peak warmth was coupled with low lake levels, low effective humidity and summertime drought. The late Holocene (~4000 cal yr BP-present) was characterized by gradually decreasing temperatures, higher lake levels and higher effective humidity. Moreover, the gradual trends of the late Holocene were probably superimposed by higher-frequency variability. The spatial variability of the Holocene temperature and moisture balance patterns were tentatively attributed to the differing heat capacities of continents and oceans, changes in atmospheric circulation modes and position of sites and subregions with respect to large water bodies and topographic barriers. The combination of physical and biological proxy archives is a pivotal aspect of this work, because non-climatic factors, such as postglacial migration, disturbances and competitive interactions, can influence reshuffling of vegetation and hence, pollen-based climate reconstructions. The oxygen-isotope records and other physical proxies presented in this work manifest that postglacial climate changes were the main driver of the establishment and expansion of temperate and boreal tree populations, and hence, large-scale and long-term vegetation patterns were in dynamic equilibrium with climate. A notable exception to this pattern may be the postglacial invasion of Norway spruce and the related suppression of mid-Holocene temperate forest. This salient step in north-European vegetation history, the development of the modern boreal ecosystem, cannot be unambiguously explained by current evidence of postglacial climate changes. The results of this work highlight that plant populations, including long-lived trees, may be able to respond strikingly rapidly to changes in climate. Moreover, interannual and seasonal variation and extreme events can exert an important influence on vegetation reshuffling. Importantly, the studies imply that the presence of diffuse refuge populations or local stands among the prevailing vegetation may have provided the means for extraordinarily rapid vegetation responses. Hence, if scattered populations are not provided and tree populations are to migrate long distances, their capacity to keep up with predicted rates of future climate change may be lower than previously thought.
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
This thesis discusses the prehistoric human disturbance during the Holocene by means of case studies using detailed high-resolution pollen analysis from lake sediment. The four lakes studied are situated between 61o 40' and 61o 50' latitudes in the Finnish Karelian inland area and vary between 2.4 and 28.8 ha in size. The existence of Early Metal Age population was one important question. Another study question concerned the development of grazing, and the relationship between slash-and-burn cultivation and permanent field cultivation. The results were presented as pollen percentages and pollen concentrations (grains cm 3). Accumulation values (grains cm 2 yr 1) were calculated for Lake Nautajärvi and Lake Orijärvi sediment, where the sediment accumulation rate was precisely determined. Sediment properties were determined using loss-on-ignition (LOI) and magnetic susceptibility (k). Dating methods used include both conventional and AMS 14C determinations, paleomagnetic dating and varve choronology. The isolation of Lake Kirjavalampi on the northern shore of Lake Ladoga took place ca. 1460 1300 BC. The long sediment cores from Finland, Lake Kirkkolampi and Lake Orijärvi in southeastern Finland and Lake Nautajärvi in south central Finland all extended back to the Early Holocene and were isolated from the Baltic basin ca. 9600 BC, 8600 BC and 7675 BC, respectively. In the long sediment cores, the expansion of Alnus was visible between 7200 - 6840 BC. The spread of Tilia was dated in Lake Kirkkolampi to 6600 BC, in Lake Orijärvi to 5000 BC and at Lake Nautajärvi to 4600 BC. Picea is present locally in Lake Kirkkolampi from 4340 BC, in Lake Orijärvi from 6520 BC and in Lake Nautajärvi from 3500 BC onwards. The first modifications in the pollen data, apparently connected to anthropogenic impacts, were dated to the beginning of the Early Metal Period, 1880 1600 BC. Anthropogenic activity became clear in all the study sites by the end of the Early Metal Period, between 500 BC AD 300. According to Secale pollen, slash-and-burn cultivation was practised around the eastern study lakes from AD 300 600 onwards, and at the study site in central Finland from AD 880 onwards. The overall human impact, however, remained low in the studied sites until the Late Iron Age. Increasing human activity, including an increase in fire frequency was detected from AD 800 900 onwards in the study sites in eastern Finland. In Lake Kirkkolampi, this included cultivation on permanent fields, but in Lake Orijärvi, permanent field cultivation became visible as late as AD 1220, even when the macrofossil data demonstrated the onset of cultivation on permanent fields as early as the 7th century AD. On the northern shore of Lake Ladoga, local activity became visible from ca. AD 1260 onwards and at Lake Nautajärvi, sediment the local occupation was traceable from 1420 AD onwards. The highest values of Secale pollen were recorded both in Lake Orijärvi and Lake Kirjavalampi between ca. AD 1700 1900, and could be associated with the most intensive period of slash-and-burn from AD 1750 to 1850 in eastern Finland.
Resumo:
The importance of supercontinents in our understanding of the geological evolution of the planet Earth has been recently emphasized. The role of paleomagnetism in reconstructing lithospheric blocks in their ancient paleopositions is vital. Paleomagnetism is the only quantitative tool for providing ancient latitudes and azimuthal orientations of continents. It also yields information of content of the geomagnetic field in the past. In order to obtain a continuous record on the positions of continents, dated intrusive rocks are required in temporal progression. This is not always possible due to pulse-like occurrences of dykes. In this work we demonstrate that studies of meteorite impact-related rocks may fill some gaps in the paleomagnetic record. This dissertation is based on paleomagnetic and rock magnetic data obtained from samples of the Jänisjärvi impact structure (Russian Karelia, most recent 40Ar-39Ar age of 682 Ma), the Salla diabase dyke (North Finland, U-Pb 1122 Ma), the Valaam monzodioritic sill (Russian Karelia, U-Pb 1458 Ma), and the Vredefort impact structure (South Africa, 2023 Ma). The paleomagnetic study of Jänisjärvi samples was made in order to obtain a pole for Baltica, which lacks paleomagnetic data from 750 to ca. 600 Ma. The position of Baltica at ca. 700 Ma is relevant in order to verify whether the supercontinent Rodinia was already fragmented. The paleomagnetic study of the Salla dyke was conducted to examine the position of Baltica at the onset of supercontinent Rodinia's formation. The virtual geomagnetic pole (VGP) from Salla dyke provides hints that the Mesoproterozoic Baltica - Laurentia unity in the Hudsonland (Columbia, Nuna) supercontinent assembly may have lasted until 1.12 Ga. Moreover, the new VGP of Salla dyke provides new constraint on the timing of the rotation of Baltica relative to Laurentia (e.g. Gower et al., 1990). A paleomagnetic study of the Valaam sill was carried out in order to shed light into the question of existence of Baltica-Laurentia unity in the supercontinent Hudsonland. Combined with results from dyke complex of the Lake Ladoga region (Schehrbakova et al., 2008) a new robust paleomagnetic pole for Baltica is obtained. This pole places Baltica on a latitude of 10°. This low latitude location is supported also by Mesoproterozoic 1.5 1.3 Ga red-bed sedimentation (for example the Satakunta sandstone). The Vredefort impactite samples provide a well dated (2.02 Ga) pole for the Kaapvaal Craton. Rock magnetic data reveal unusually high Koenigsberger ratios (Q values) in all studied lithologies of the Vredefort dome. The high Q values are now first time also seen in samples from the Johannesburg Dome (ca. 120 km away) where there is no impact evidence. Thus, a direct causative link of high Q values to the Vredefort impact event can be ruled out.
Resumo:
The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as ‘vulnerable’ to extinction under Australia’s
Resumo:
Abstract is not available.
Resumo:
An investigation of power frequency (50 Hz) surface partial discharges in dry air, using 21r/3 Rogowski profile electrodes in the low pressure range of 0.067 to 91.333 kPa, shows that for the discharges occurring symmetrically around the electrodes and just outside the uniform field region, the breakdown voltages are 20 to 30% lower than those accounted for by the usual Paschen values. Emphasis, therefore, has been given to modified values of breakdown voltages for any useful calculations. The effect of reduced pressure on inception voltage has been discussed and an attempt has been made to explain the difference between the observed and calculated values on the basis of a pressure-dependent secondary ionization coefficient. It is shown that increasing the insulation thickness in a critical pressure range (0.067 to 0.400 kPa) does not allow any significant increase in the discharge free working stress of the insulation system. At higher pressures (>0.400 kPa) the increase in inception voltage with thickness and pressure follows an equation which is expected to hold for other insulating materials as well.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
White nectarines (Prunus persica var. nucipersica) were fumigated with methyl bromide (MB) at a nominal treatment dose of 18 g m-3 at 18°C for 5 h and 30 min as a quarantine disinfestation treatment against Bactrocera tryoni, the Queensland fruit fly. Three large scale trials were conducted against each of the four immature lifestages, eggs and first, second and third instars. There were no survivors from the estimated 43,614 eggs, 41,873 first instars, 41,345 second instars and 33,549 third instars treated, thereby resulting in an efficacy of GROTERDAN99.99% mortality at the 95% confidence level for each lifestage. Of the 12 trials reported herein, the highest concentration of MB, sampled from the chamber headspace analysed by gas chromatography, was 18.7 g m-3. The maximum chamber temperature from 5 min readings was 19.7°C and the maximum fruit core temperature was 19.5°C. The treatment time for all trials was exactly 5.5 h. Thus the recommended treatment dose to disinfest nectarines from B. tryoni is 19.0 g m-3 MB at 20.0°C for 5.5 h. Fruit quality trials were conducted on white nectarines at three combinations of treatment parameters: 15 g m-3 MB at 19°C for 5.25 h; 18 g m-3 MB at 19°C for 5.5 h and 21 g m-3 MB at 19°C for 5.5 h. The fruit were stored at 0, 4 and 8 days at 4°C and 8 days at 4°C followed by 4 d at 22°C. They were then were assessed for skin colour, flesh colour, skin defects, flesh defects, fruit weight loss, flesh firmness, total soluble solids, titratable acidity and rots. There was no significant difference between untreated control and MB treated fruits in any of the parameters measured. Thus the treatments did not have adverse effects on fruit quality.