718 resultados para Lattice-Valued Fuzzy connectives. Extensions. Retractions. E-operators
Resumo:
A Lyapunov-based stabilizing control design method for uncertain nonlinear dynamical systems using fuzzy models is proposed. The controller is constructed using a design model of the dynamical process to be controlled. The design model is obtained from the truth model using a fuzzy modeling approach. The truth model represents a detailed description of the process dynamics. The truth model is used in a simulation experiment to evaluate the performance of the controller design. A method for generating local models that constitute the design model is proposed. Sufficient conditions for stability and stabilizability of fuzzy models using fuzzy state-feedback controllers are given. The results obtained are illustrated with a numerical example involving a four-dimensional nonlinear model of a stick balancer.
Resumo:
Relaxed conditions for stability of nonlinear continuous-time systems given by fuzzy models axe presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. This result is also used for fuzzy regulators design. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers axe described by LMIs (Linear Matrix Inequalities), that can be solved efficiently using convex programming techniques.
Resumo:
Relaxed conditions for stability of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed methods provide better or at least the same results of the methods presented in the literature. Numerical results exemplify this fact. These results are also used for fuzzy regulators and observers designs. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by linear matrix inequalities, that can be solved efficiently using convex programming techniques. The specification of the decay rate, constrains on control input and output are also discussed.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In almost all cases, the goal of the design of automatic control systems is to obtain the parameters of the controllers, which are described by differential equations. In general, the controller is artificially built and it is possible to update its initial conditions. In the design of optimal quadratic regulators, the initial conditions of the controller can be changed in an optimal way and they can improve the performance of the controlled system. Following this idea, a LNU-based design procedure to update the initial conditions of PI controllers, considering the nonlinear plant described by Takagi-Sugeno fuzzy models, is presented. The importance of the proposed method is that it also allows other specifications, such as, the decay rate and constraints on control input and output. The application in the control of an inverted pendulum illustrates the effectively of proposed method.
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
A 3D binary image is considered well-composed if, and only if, the union of the faces shared by the foreground and background voxels of the image is a surface in R3. Wellcomposed images have some desirable topological properties, which allow us to simplify and optimize algorithms that are widely used in computer graphics, computer vision and image processing. These advantages have fostered the development of algorithms to repair bi-dimensional (2D) and three-dimensional (3D) images that are not well-composed. These algorithms are known as repairing algorithms. In this dissertation, we propose two repairing algorithms, one randomized and one deterministic. Both algorithms are capable of making topological repairs in 3D binary images, producing well-composed images similar to the original images. The key idea behind both algorithms is to iteratively change the assigned color of some points in the input image from 0 (background)to 1 (foreground) until the image becomes well-composed. The points whose colors are changed by the algorithms are chosen according to their values in the fuzzy connectivity map resulting from the image segmentation process. The use of the fuzzy connectivity map ensures that a subset of points chosen by the algorithm at any given iteration is the one with the least affinity with the background among all possible choices
Resumo:
Intendding to understand how the human mind operates, some philosophers and psycologists began to study about rationality. Theories were built from those studies and nowadays that interest have been extended to many other areas such as computing engineering and computing science, but with a minimal distinction at its goal: to understand the mind operational proccess and apply it on agents modelling to become possible the implementation (of softwares or hardwares) with the agent-oriented paradigm where agents are able to deliberate their own plans of actions. In computing science, the sub-area of multiagents systems has progressed using several works concerning artificial intelligence, computational logic, distributed systems, games theory and even philosophy and psycology. This present work hopes to show how it can be get a logical formalisation extention of a rational agents architecture model called BDI (based in a philosophic Bratman s Theory) in which agents are capable to deliberate actions from its beliefs, desires and intentions. The formalisation of this model is called BDI logic and it is a modal logic (in general it is a branching time logic) with three access relations: B, D and I. And here, it will show two possible extentions that tranform BDI logic in a modal-fuzzy logic where the formulae and the access relations can be evaluated by values from the interval [0,1]