993 resultados para Lake-sediments
Resumo:
The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial-interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before ~320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe/Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial-interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial-interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes.
Resumo:
Core PSh-2510 (4.76 m long) recovered mud and clay of the Baltic Ice Lake and of all subsequent stages of the Baltic Sea. Grain size, mineral and chemical compositions, as well as physical properties of sediments were studied. Biostratigraphic (diatoms and foraminifers), lithostratigraphic, and chemical (26 elements) methods, as well as radiocarbon datings were used to subdivide core sections into stratigraphic units.
Resumo:
This article describes the bottom sediments, lake ores and limestone bedrock dredged from lake Mad¸see in Pommerania now known as lake Miedwie in Poland.
Resumo:
The sediments within Toolik Lake in arctic Alaska are characterized by extremely low rates of organic matter sedimentation and unusually high concentrations of iron and manganese. Pore water and solid phase measurements of iron, manganese, trace metals, carbon, nitrogen, phosphorus, and sulfur are consistent with the hypothesis that the reduction of organic matter by iron and manganese is the most important biogeochemical reaction within the sediment. Very low rates of dissolved oxygen consumption by the sediments result in an oxidizing environment at the sediment-water interface. This results in high retention of upwardly-diffusing iron and manganese and the formation of metal-enriched sediment. Phosphate in sediment pore waters is strongly adsorbed by the metal-enriched phases. Consequently, fluxes of phosphorus from the sediments to overlying waters are very small and contribute to the oligotrophic nature of the Toolik Lake aquatic system. Toolik Lake contains an unusual type of lacustrine sediment, and in many ways the sediments are similar to those found in oligotrophic oceanic environments.
Resumo:
The Holocene sediment record of Lake Tiefer See exhibits striking alternations between well-varved and non-varved intervals. Here we present a high resolution multi-proxy record for the past ~6000 years and discuss possible causes for the observed sediment variability. This approach comprises of microfacies, geochemical and microfossil analyses as well as of a multiple dating concept including varve counting, tephrochronology and radiocarbon dating. Four periods of predominantly well-varved sediment were identified at 6000-3950 cal. a BP, 3100-2850 cal. a BP, 2100-750 cal. a BP and AD 1924-present. Except of sub-recent varve formation, these periods are considered to reflect reduced lake circulation and consequently, stronger anoxic bottom water conditions. In contrast, intercalated intervals of poor varve preservation or even extensively mixed non-varved sediments indicate strengthened lake circulation. Sub-recent varve formation since AD 1924 is, in addition to natural forcing, influenced by enhanced lake productivity due to modern anthropogenic eutrophication. The general increase in periods of intensified lake circulation in Lake Tiefer See since ~4000 cal. a BP presumably is caused by gradual changes in Northern Hemisphere orbital forcing, leading to cooler and windier conditions in Central Europe. Superimposed decadal to centennial scale variability of the lake circulation regime likely is the result of additional human-induced changes of the catchment vegetation. The coincidence of major non-varved periods at Lake Tiefer See and intervals of bioturbated sediments in the Baltic Sea implies a broader regional significance of our findings.
Resumo:
Here we present a tephrostratigraphic record (core Co1202) recovered from the northeastern part of Lake Ohrid (Republics of Macedonia and Albania) reaching back to Marine Isotope Stage (MIS) 6. Overall ten horizons (OT0702-1 to OT0702-10) containing volcanic tephra have been recognised throughout the 14.94 m long sediment succession. Four tephra layers were visible at macroscopic inspection (OT0702-4, OT0702-6, OT0702-8 and OT0702-9), while the remaining six are cryptotephras (OT0702-1, OT0702-2, OT0702-3, OT0702-5, OT0702-7 and OT0702-10) identified from peaks in K, Zr and Sr intensities, magnetic susceptibility measurements, and washing and sieving of the sediments. Glass shards of tephra layers and cryptotephras were analysed with respect to their major element composition, and correlated to explosive eruptions of Italian volcanoes. The stratigraphy and the major element composition of tephra layers and cryptotephras allowed the correlation of OT0702-1 to AD 472 or AD 512 eruptions of Somma-Vesuvius, OT0702-2 to the FL eruption of Mount Etna, OT0702-3 to the Mercato from Somma-Vesuvius, OT0702-4 to SMP1-e/Y-3 eruption from the Campi Flegrei caldera, OT0702-5 to the Codola eruption (Somma-Vesuvius or Campi Flegrei), OT0702-6 to the Campanian Ignimbrite/Y-5 from the Campi Flegrei caldera, OT0702-7 to the Green Tuff/Y-6 eruption from Pantelleria Island, OT0702-8 to the X-5 eruption probably originating from the Campi Flegrei caldera, OT0702-9 to the X-6 eruption of generic Campanian origin, and OT0702-10 to the P-11 eruption from Pantelleria Island. The fairly well-known ages of these tephra layers and parent eruptions provide new data on the dispersal and deposition of these tephras and, furthermore, allow the establishment of a chronological framework for core Co1202 for a first interpretation of major sedimentological changes.
Resumo:
Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site - a feature we attribute to the availability of labile organic matter and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA provides information on aerobic and anaerobic heterotrophs related to Actinobacteria, Nitrospirae, Chloroflexi and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking organic matter. However, extracellular DNA concentrations rapidly decrease with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments show that microbial populations perform successive metabolisms related to sulfur, iron and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments.
Resumo:
Stable oxygen isotope analyses at annual, 2-, 5-, 10- and 20-varve sample resolutions were carried out on two selected varve intervals from the interglacial sediment record of the Piànico palaeolake. These sediments are particularly suitable for ultra-high-resolution isotope analyses on lacustrine endogenic calcite because of the exceptionally well-preserved varve structure. A bias through detrital contamination can be excluded because microscopically controlled sampling enabled selecting detritus-free samples. The studied sediment intervals comprise 352 and 88 continuous varve series formed during periods of rapid climate change at the onset and end of a marked millennial-scale cool interval during the Piànico Interglacial. The most intriguing result is a pronounced short-term oscillation in the bi-annually resolved isotope record superimposed on the general decreasing and increasing d18O trends at the climatic transitions that is recorded at lower sample resolution. Spectral analyses of the bi-annual time series reveal periodicities indicating solar and NAO controls on the d18O record. Multiple d18O measurements from endogenic calcite of individual varves showed variations of up to 0.6 per mil, thus larger than the observed inter-annual variability and most likely explained by seasonal effects.
Resumo:
In northeastern Siberia, Russia, a 1.2 m sediment core was retrieved and radiocarbon dated from a small and shallow lake located at the western side of the lower Lena River (N 69°24', E 123°50', 81 m a.s.l.). The objective of this paper is to reconstruct the palaeoenvironmental variability and to infer major palaeoclimate trends that have occurred since ~ 13.3 cal. kyrs BP. We analysed the diatom assemblages, sedimentology (grain size, total organic carbon (TOC), total nitrogen (TN)), and the elemental and mineralogical composition using X-ray fluorescence (XRF) and X-ray diffractometry (XRD) of the sediment core. Our results show parallel changes in the diatom species composition and sediment characteristics. Enhanced minerogenic sediment input and the occurrence of pyrite is indicative of a cold period between ~ 12.7-11.6 cal. kyrs BP. The diatom data enable a qualitative inference about the local ecological conditions to be made, and reveal an oligotrophic lake system with alkaline and cold conditions during the earliest Holocene. Moderately warmer climates are inferred for the period from ~ 9.1 to 5.7 cal. kyrs BP. The major shift in the diatom assemblage, from dominance of small benthic fragilarioid taxa to a more complex diatom flora with an influx of several achnanthoid and naviculoid diatom species, occurred after a transitional period of about 1400 years (7.1 to 5.7 cal. kyrs BP) at ~ 5.7 cal. kyrs BP, indicating a circumneutral and warmer hydrological regime during the Holocene thermal maximum (HTM). Diatom valve concentrations declined starting ~ 2.8 cal. kyrs BP, but have been rising again since less than or equalt to 600 cal. years BP. This has occurred in parallel to the increased presence of acidophilous diatom taxa (e.g. Eunotia spp.) and decreased presence of small benthic fragilarioid species in the most recent sediments, which is interpreted as the result of neoglacial cooling and subsequent recent climate warming. Our findings are compared to other lake-inferred climate reconstructions along the Lena River. We conclude that the timing and spatial variability of the HTM in the lower Lena River area reveal a temporal delay from north to south.