948 resultados para Laboratories parameters
Resumo:
There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater applications such as washout resistance and compressive strength. This paper reviews statistical models developed using a factorial design that was carried out to model the influence of key parameters on properties affecting the performance of underwater cement grout. Such responses of fluidity included minislump and flow time measured by Marsh cone, washout resistance, unit weight, and compressive strength. The models are valid for mixes with 0.35–0.55 water-to-binder ratio (W/B), 0.053–0.141% of antiwashout admixture (AWA), by mass of water, and 0.4–1.8% (dry extract) of superplasticizer (SP), by mass of binder. Two types of underwater grout were tested: the first one made with cement and the second one made with 20% of pulverised fuel ash (PFA) replacement, by mass of binder. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods that are highlighted.
Resumo:
Index properties such as the liquid limit and plastic limit are widely used to evaluate certain geotechnical parameters of fine-grained soils. Measurement of the liquid limit is a mechanical process, and the possibility of errors occurring during measurement is not significant. However, this is not the case for plastic limit testing, despite the fact that the current method of measurement is embraced by many standards around the world. The method in question relies on a fairly crude procedure known widely as the ‘thread rolling' test, though it has been the subject of much criticism in recent years. It is essential that a new, more reliable method of measuring the plastic limit is developed using a mechanical process that is both consistent and easily reproducible. The work reported in this paper concerns the development of a new device to measure the plastic limit, based on the existing falling cone apparatus. The force required for the test is equivalent to the application of a 54 N fast-static load acting on the existing cone used in liquid limit measurements. The test is complete when the relevant water content of the soil specimen allows the cone to achieve a penetration of 20 mm. The new technique was used to measure the plastic limit of 16 different clays from around the world. The plastic limit measured using the new method identified reasonably well the water content at which the soil phase changes from the plastic to the semi-solid state. Further evaluation was undertaken by conducting plastic limit tests using the new method on selected samples and comparing the results with values reported by local site investigation laboratories. Again, reasonable agreement was found.
Resumo:
The appearance of the open code paradigm and the demands of social movements have permeated the ways in which today’s cultural institutions are organized. This article analyzes the birth of a new critical and cooperative spatiality and how it is transforming current modes of cultural research and production. It centers on the potential for establishing the new means of cooperation that are being tested in what are defined as collaborative artistic laboratories. These are hybrid spaces of research and creation based on networked and cooperative structures producing a new societal-technical body that forces us to reconsider the traditional organic conditions of the productive scenarios of knowledge and artistic practice.
Resumo:
The single-cell gel electrophoresis technique or comet assay is widely regarded as a quick and reliable method of analysing DNA damage in individual cells. It has a proven track record from the fields of biomonitoring to nutritional studies. The assay operates by subjecting cells that are fixed in agarose to high salt and detergent lysis, thus removing all the cellular content except the DNA. By relaxing the DNA in an alkaline buffer, strands containing breaks are released from supercoiling. Upon electrophoresis, these strands are pulled out into the agarose, forming a tail which, when stained with a fluorescent dye, can be analysed by fluorescence microscopy. The intensity of this tail reflects the amount of DNA damage sustained. Despite being such an established and widely used assay, there are still many aspects of the comet assay which are not fully understood. The present review looks at how the comet assay is being used, and highlights some of its limitations. The protocol itself varies among laboratories, so results from similar studies may vary. Given such discrepancies, it would be attractive to break the assay into components to generate a mathematical model to investigate specific parameters.
Resumo:
This article describes the results of a comprehensive investigation to determine the link between process parameters and observed wall thickness output for the plug-assisted thermoforming process. The overall objective of the work was to systematically investigate the process parameters that may be adjusted during production to control the wall thickness distribution of parts manufactured by plug-assisted thermoforming. The parameters investigated were the sheet temperature, plug temperature, plug speed, plug displacement, plug shape, and air pressure. As well as quantifying the effects of each parameter on the wall thickness distribution, a further aim of the work was to improve the understanding of the physical mechanisms of deformation of the sheet during the different stages of the process. The process parameters shown to have the greatest effect on experimentally determined wall thickness distribution were the plug displacement, sheet temperature, plug temperature, and plug shape. It is proposed that during the plug-assisted thermoforming of polystyrene the temperature dependent friction between the plug and sheet surface was the most important factor in determining product wall thickness distribution, whereas heat transfer was shown to play a less important role. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers
Influence of post-calving regrouping strategy on welfare and performance parameters in dairy heifers
Resumo:
Thirty-six Holstein Friesian heifers (dairy herd replacements) were assigned to one of three regrouping treatments during the post-calving period. In Treatment 1, heifers were introduced individually to an established group of cows and heifers within 24 h of calving ('Single-day 1'). In Treatment 2, heifers were housed individually in a straw pen for I week after calving before being added individually to the group ('Single-day 7'). In Treatment 3, two heifers were housed together in a straw pen for 1 week after calving before being added as a pair to the group ('Pair-day T). The size of the resident group remained constant at 16 animals (10 mature cows and 6 first-lactation heifers). The behaviour of the heifers was assessed during their first 8 h and first month in the resident group, and milk yield parameters, body condition loss and live weight loss were assessed during the first month post-calving. Reproductive performance was assessed during the post-calving period, and hoof health parameters were measured I month prior to calving, and at I and 3 months post-calving. Heifers in the 'Pair-day 7' treatment appeared to associate closely during their first month in the group by spending more time than expected in the same pen area and in adjacent cubicles (P
Resumo:
One thousand two hundred pigs were weaned at 4 weeks of age and mixed to form groups of ten animals that were balanced for gender. The groups consisted of uniform weight groups (i.e. separate groups of small, medium or large pigs), or mixed weight groups (i.e. groups containing small, medium and large pigs). Half of the groups were retained from weaning until slaughter at 21 weeks of age, and half were regrouped at the start of the finishing period at 10 weeks of age. In this regrouping, uniform weight groups were regrouped to form mixed weight groups, and mixed weight groups were regrouped to form uniform weight groups. In addition, some mixed weight groups were regrouped to form mixed weight groups in order to assess the effect of regrouping at 10 weeks of age on performance and aggressive behaviour.
Resumo:
The aim of the present study was to assess the effects of Holstein-Friesian (HF) and Norwegian (N) dairy cattle genotypes on lameness parameters in dairy cattle within different production systems over the first 2 lactations. Following calving, HF (n = 39) and N (n = 45) heifers were allocated to 1 of 3 systems of production (high level of concentrate, low level of concentrate, and grass-based). High-and low-concentrate animals were continuously housed indoors on a rotational system so that they spent similar amounts of time on slatted and solid concrete floors. Animals on the grass treatment grazed from spring to autumn in both years of the study, so that most animals on this treatment grazed from around peak to late lactation. Claw health was recorded in both hind claws of each animal at 4 observation periods during each lactation as follows: 1) -8 to 70 d postcalving, 2) 71 to 150 d postcalving, 3) 151 to 225 d postcalving, and 4) 226 to 364 d postcalving. Sole lesions, heel erosion, axial wall deviation, sole length of the right lateral hind claw (claw length), right heel width, and right lateral hind heel height were recorded as well as the presence of digital dermatitis. The N cows had lower (better) white line and total lesion scores than HF cows. Cows on the high-and low-concentrate treatments had better sole and total lesion scores than cows on the grass treatment. The HF cows had better locomotion scores than N cows. Breed and production system differences were observed with respect to claw conformation, including claw length, heel width, and heel height. Digital dermatitis was associated with worse sole lesion scores and interacted with production system to influence white line lesion scores and maximum heel erosion scores. This study shows that genetic, environmental, and infectious factors are associated with hoof pathologies in dairy cows.
Resumo:
Three hundred and twenty pigs were reared from birth to slaughter at 21 weeks in either barren or enriched environments. The barren environments were defined as intensive housing (slatted floors and minimum recommended space allowances) and the enriched environments incorporated extra space including an area which contained peat and straw in a rack. Behavioural observations showed that environmental enrichment reduced time spent inactive and rime spent involved in harmful social and aggressive behaviour (P
Resumo:
High-resolution optical spectra of 57 Galactic B-type supergiant stars have been analysed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-local thermodynamic equilibrium grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However, for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However, a correlation was found with the inferred projected rotational velocities of the main-sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulence and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to subphotospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.