957 resultados para K-Fold Accuracy
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
The thesis explores the discourse of two global news agencies, the Associated Press (AP) and Reuters, which together with the French AFP are generally regarded as the world s leading news distributors. A glance at the guidelines given by AP and Reuters to their journalists shows that these two news agencies make a lot of effort to strive for objectivity the well-known journalistic ideal, which, however, is an almost indefinable concept. In journalism textbooks definitions of objectivity often contain various components: detachment, nonpartisanship, facticity, balance, etc. AP and Reuters, too, in their guidelines, present several other ideals besides objectivity , viz., reliability, accuracy, balance, freedom from bias, precise sourcing, reporting the truth, and so on. Other central concepts connected to objectivity are neutrality and impartiality. However, objectivity is, undoubtedly, the term that is most often mentioned when the ethics of journalism is discussed, acting as a kind of umbrella term for several related journalistic ideals. It can even encompass the other concept that is relevant for this study, that of factuality. These two intertwined concepts are extremely complex; paradoxically, it is easier to show evidence of the lack of objectivity or factuality than of their existence. I argue that when journalists conform to the deep-rooted conventions of objective news reporting, facts may be blurred, and the language becomes vague and ambiguous. As global distributors of news, AP and Reuters have had an influential role in creating and reinforcing conventions of (at least English-language) news writing. These conventions can be seen to work at various levels of news reporting: the ideological (e.g., defining what is regarded as newsworthy, or who is responsible), structural (e.g., the well-known inverted pyramid model), and stylistic (e.g., presupposing that in hard news reports, the journalist s voice should be backgrounded). On the basis of my case studies, I have found four central conventions to be worthy of closer examination: the conventional structure of news reports, the importance of newsworthiness, the tactics of impersonalisation which tends to blur news actors responsibility, and the routines of presenting emotions. My linguistic analyses draw mainly on M.A.K. Halliday s Systemic Functional Grammar, on notions of transitivity, ergativity, nominalisation and grammatical metaphor. The Appraisal framework, too, has provided useful tools for my analyses. The thesis includes six case studies dealing with the following topics: metaphors in political reporting, terrorism discourse, terrorism fears, emotions more generally, unnamed sources as rhetorical constructs, and responsibility in the convention of attribution.
Resumo:
By observing mergers of compact objects, future gravity wave experiments would measure the luminosity distance to a large number of sources to a high precision but not their redshifts. Given the directional sensitivity of an experiment, a fraction of such sources (gold plated) can be identified optically as single objects in the direction of the source. We show that if an approximate distance-redshift relation is known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the self-calibrated best possible distance-redshift relation and provide an analytical expression for the accuracy achievable. We derive the lower limit on the total number of sources that is needed to achieve this accuracy through self-calibration. We show that this limit depends exponentially on the beam width and give estimates for various experimental parameters representative of future gravitational wave experiments DECIGO and BBO.
Resumo:
Upper bounds at the weak scale are obtained for all lambda(ij)lambda(im) type product couplings of the scalar leptoquark model which may affect K-0 - (K) over bar (0), B-d - (B) over bar (d), and B-s - (B) over bar (s) mixing, as well as leptonic and semileptonic K and B decays. Constraints are obtained for both real and imaginary parts of the couplings. We also discuss the role of leptoquarks in explaining the anomalously large CP-violating phase in B-s - (B) over bar (s) mixing.
Resumo:
We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t = 0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher-order ChPT corrections at the second Callan-Treiman point.
Resumo:
Spike detection in neural recordings is the initial step in the creation of brain machine interfaces. The Teager energy operator (TEO) treats a spike as an increase in the `local' energy and detects this increase. The performance of TEO in detecting action potential spikes suffers due to its sensitivity to the frequency of spikes in the presence of noise which is present in microelectrode array (MEA) recordings. The multiresolution TEO (mTEO) method overcomes this shortcoming of the TEO by tuning the parameter k to an optimal value m so as to match to frequency of the spike. In this paper, we present an algorithm for the mTEO using the multiresolution structure of wavelets along with inbuilt lowpass filtering of the subband signals. The algorithm is efficient and can be implemented for real-time processing of neural signals for spike detection. The performance of the algorithm is tested on a simulated neural signal with 10 spike templates obtained from [14]. The background noise is modeled as a colored Gaussian random process. Using the noise standard deviation and autocorrelation functions obtained from recorded data, background noise was simulated by an autoregressive (AR(5)) filter. The simulations show a spike detection accuracy of 90%and above with less than 5% false positives at an SNR of 2.35 dB as compared to 80% accuracy and 10% false positives reported [6] on simulated neural signals.
Resumo:
The activity of gallium in liquid Ga-Te alloys has been measured at 1120 K using a solid state galvanic cell incorporating yttria-stabilized thoria as the solid electrolyte. The cell can be schematically represented as (−) W,Re,Ga(1)+Ga2O3(s)|(Y2O3) ThO2|Ga-Te(1) + Ga2O3(s), Re, W (+) The activity of tellurium was derived by Gibbs-Duhem integration. The activity of gallium shows negative deviation from Raoult's law for XGa < 0.6 and positive deviation from ideality for XGa > 0.6. The activity of gallium was constant in the composition range 0.73 < XGa < 0.89, indicating liquid state immiscibility in this region. The Gibbs energy of mixing and the concentration-concentration structure factor at long wavelength limit show a minimum at XGa ≈ 0.4, suggesting strong interactions in the liquid phase with formation of ‘Ga2Te3‘-type complexes
Resumo:
We discuss the key issues in the deployment of sparse sensor networks. The network monitors several environment parameters and is deployed in a semi-arid region for the benefit of small and marginal farmers. We begin by discussing the problems of an existing unreliable 1 sq km sparse network deployed in a village. The proposed solutions are implemented in a new cluster. The new cluster is a reliable 5 sq km network. Our contributions are two fold. Firstly, we describe a. novel methodology to deploy a sparse reliable data gathering sensor network and evaluate the ``safe distance'' or ``reliable'' distance between nodes using propagation models. Secondly, we address the problem of transporting data from rural aggregation servers to urban data centres. This paper tracks our steps in deploying a sensor network in a village,in India, trying to provide better diagnosis for better crop management. Keywords - Rural, Agriculture, CTRS, Sparse.
Resumo:
The two dimensional plane can be filled with rhombuses, so as to generate non-periodic tilings with 4, 6, 8, 10 and 12-fold symmetries. Some representative tilings constructed using the rule of inflation are shown. The numerically computed diffraction patterns for the corresponding tilings are also shown to facilitate a comparison with possible X-ray or electron diffraction pictures.
Resumo:
Bending analysis of closed cylindrical shells subjected to asymmetric load and having different support conditions is of interest in the design of chimneys, water towers, oil storage tanks, etc. A simple method of analyzing a long cantilever cylindrical shell, subjected to asymmetric load, is presented in the paper, using Schorer’s shell theory and orthogonal functions. The application of the solution has been illustrated with an example of a cantilever shell subjected to wind loads. The results obtained for this problem have been compared with the previously available results to illustrate the accuracy of the results obtained here. The solution presented can also be extended to a cylindrical shell with other support conditions, as well as to the study of free vibration of a cylindrical shell. The present solution will be very useful for designers who need to obtain numerical results for specific problems with minimum computational effort.
Resumo:
Infrared Earth sensors are used in spacecraft for attitude sensing. Their accuracy is limited by systematic and random errors. Dominant sources of systematic errors are analyzed for a typical scanning infrared Earth sensor used in a remote-sensing satellite in a 900-km sun-synchronous orbit. The errors considered arise from 1) seasonable variation of infrared radiation, 2) oblate shape of the Earth, 3) ambient temperature of sensors, 4) changes in spin/scan period, and 5) misalignment of the axis of the sensors. Simple relations are derived using least-squares curve fitting for onboard correction of these errors. With these, it is possible to improve the accuracy of attitude determination by eight fold and achieve performance comparable to ground-based post-facto attitude computation.
Resumo:
The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation.This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3, in which the Mn ions are present only in one charge state as Mn3+ and Mn4+ respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure call be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition.. the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.