927 resultados para Histological subtypes
Resumo:
Dioxins are ubiquitous environmental poisons having unequivocal adverse health effects on various species. The majority of their effects are thought to be mediated by the aryl hydrocarbon receptor (AhR). Developing human teeth may be sensitive to dioxins and the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to rodent teeth. Mechanisms of TCDD toxicity can be studied only experimentally. The aim of the present thesis work was to delineate morphological end points of developmental toxicity of TCDD in rat and mouse teeth and salivary glands in vivo and in vitro and to characterize their cellular and molecular background. Mouse embryonic teeth and submandibular gland explants were grown in organ culture without/with TCDD at various concentrations, examined stereomicroscopically and processed for histological examination. The effects of TCDD on cellular mechanisms essential for organogenesis were investigated. The expression of various genes eliciting the response to TCDD exposure or involved in tooth and salivary gland development was studied at the mRNA and/or protein levels by in situ hybridization and immunohistochemistry. Association of the dental effects of TCDD with the resistance of a rat strain to TCDD acute lethality was analyzed in two lactationally exposed rat strains. The effect of TCDD on rat molar tooth mineralization was studied in tissue sections. TCDD dose- and developmental stage-dependently interfered with tooth formation. TCDD prevented early mouse molar tooth morphogenesis and altered cuspal morphology by enhancing programmend cell death, or apoptosis, in dental epithelial cells programmed to undergo apotosis. Cell proliferation was not affected. TCDD impaired mineralization of rat molar dental matrices, possibly by specifically reducing the expression of the mineralization-related dentin sialophosphoprotein gene shown in cultured mouse teeth. The impaired mineralization of rat teeth was accompanied by decreased expression of AhR and the TCDD-inducible xenobiotic-metabolozing enzyme P4501 A1 (CYP1A1), suggesting mediation of the TCDD effect by the AhR pathway. The severe interference by TCDD with rat incisor formation was independent of the genotypic variation of AhR determining the resistance of a rat strain to TCDD acute lethality. The impairment by TCDD of mouse submandibular gland branching morphogenesis was associated with CYP1A1 induction and involved blockage of EGF receptor signalling. In conclusion, TCDD exposure is likely to have activated the AhR pathway in target organs with the consequent activation of other signalling pathways involving developmentally regulated genes. The resultant phenotype is organ specific and modified by epithelial-mesenchymal interactions and dependent on dose as well as the stage of organogenesis at the time of TCDD exposure. Teeth appear to be responsive to TCDD exposure throughout their development.
Resumo:
Introduction: It is unclear whether patients diagnosed according to International Classification of Headache Disorders criteria for migraine with aura (MA) and migraine without aura (MO) experience distinct disorders or whether their migraine subtypes are genetically related. Aim: Using a novel gene-based (statistical) approach, we aimed to identify individual genes and pathways associated both with MA and MO. Methods: Gene-based tests were performed using genome-wide association summary statistic results from the most recent International Headache Genetics Consortium study comparing 4505 MA cases with 34,813 controls and 4038 MO cases with 40,294 controls. After accounting for non-independence of gene-based test results, we examined the significance of the proportion of shared genes associated with MA and MO. Results: We found a significant overlap in genes associated with MA and MO. Of the total 1514 genes with a nominally significant gene-based p value (pgene-based ≤ 0.05) in the MA subgroup, 107 also produced pgene-based ≤ 0.05 in the MO subgroup. The proportion of overlapping genes is almost double the empirically derived null expectation, producing significant evidence of gene-based overlap (pleiotropy) (pbinomial-test = 1.5 × 10–4). Combining results across MA and MO, six genes produced genome-wide significant gene-based p values. Four of these genes (TRPM8, UFL1, FHL5 and LRP1) were located in close proximity to previously reported genome-wide significant SNPs for migraine, while two genes, TARBP2 and NPFF separated by just 259 bp on chromosome 12q13.13, represent a novel risk locus. The genes overlapping in both migraine types were enriched for functions related to inflammation, the cardiovascular system and connective tissue. Conclusions: Our results provide novel insight into the likely genes and biological mechanisms that underlie both MA and MO, and when combined with previous data, highlight the neuropeptide FF-amide peptide encoding gene (NPFF) as a novel candidate risk gene for both types of migraine.
Resumo:
BACKGROUND There has been intensive debate whether migraine with aura (MA) and migraine without aura (MO) should be considered distinct subtypes or part of the same disease spectrum. There is also discussion to what extent migraine cases collected in specialised headache clinics differ from cases from population cohorts, and how female cases differ from male cases with respect to their migraine. To assess the genetic overlap between these migraine subgroups, we examined genome-wide association (GWA) results from analysis of 23,285 migraine cases and 95,425 population-matched controls. METHODS Detailed heterogeneity analysis of single-nucleotide polymorphism (SNP) effects (odds ratios) between migraine subgroups was performed for the 12 independent SNP loci significantly associated (p < 5 x 10(-8); thus surpassing the threshold for genome-wide significance) with migraine susceptibility. Overall genetic overlap was assessed using SNP effect concordance analysis (SECA) at over 23,000 independent SNPs. RESULTS: Significant heterogeneity of SNP effects (p het < 1.4 x 10(-3)) was observed between the MA and MO subgroups (for SNP rs9349379), and between the clinic- and population-based subgroups (for SNPs rs10915437, rs6790925 and rs6478241). However, for all 12 SNPs the risk-increasing allele was the same, and SECA found the majority of genome-wide SNP effects to be in the same direction across the subgroups. CONCLUSIONS Any differences in common genetic risk across these subgroups are outweighed by the similarities. Meta-analysis of additional migraine GWA datasets, regardless of their major subgroup composition, will identify new susceptibility loci for migraine.
Resumo:
OBJECTIVE To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. METHODS We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. RESULTS We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 x 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 x 10(-20) for the CE score in MO). CONCLUSIONS Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype.
Resumo:
Nephrin is a transmembrane protein belonging to the immunoglobulin superfamily and is expressed primarily in the podocytes, which are highly differentiated epithelial cells needed for primary urine formation in the kidney. Mutations leading to nephrin loss abrogate podocyte morphology, and result in massive protein loss into urine and consequent early death in humans carrying specific mutations in this gene. The disease phenotype is closely replicated in respective mouse models. The purpose of this thesis was to generate novel inducible mouse-lines, which allow targeted gene deletion in a time and tissue-specific manner. A proof of principle model for succesful gene therapy for this disease was generated, which allowed podocyte specific transgene replacement to rescue gene deficient mice from perinatal lethality. Furthermore, the phenotypic consequences of nephrin restoration in the kidney and nephrin deficiency in the testis, brain and pancreas in rescued mice were investigated. A novel podocyte-specific construct was achieved by using standard cloning techniques to provide an inducible tool for in vitro and in vivo gene targeting. Using modified constructs and microinjection procedures two novel transgenic mouse-lines were generated. First, a mouse-line with doxycycline inducible expression of Cre recombinase that allows podocyte-specific gene deletion was generated. Second, a mouse-line with doxycycline inducible expression of rat nephrin, which allows podocyte-specific nephrin over-expression was made. Furthermore, it was possible to rescue nephrin deficient mice from perinatal lethality by cross-breeding them with a mouse-line with inducible rat nephrin expression that restored the missing endogenous nephrin only in the kidney after doxycycline treatment. The rescued mice were smaller, infertile, showed genital malformations and developed distinct histological abnormalities in the kidney with an altered molecular composition of the podocytes. Histological changes were also found in the testis, cerebellum and pancreas. The expression of another molecule with limited tissue expression, densin, was localized to the plasma membranes of Sertoli cells in the testis by immunofluorescence staining. Densin may be an essential adherens junction protein between Sertoli cells and developing germ cells and these junctions share similar protein assembly with kidney podocytes. This single, binary conditional construct serves as a cost- and time-efficient tool to increase the understanding of podocyte-specific key proteins in health and disease. The results verified a tightly controlled inducible podocyte-specific transgene expression in vitro and in vivo as expected. These novel mouse-lines with doxycycline inducible Cre recombinase and with rat nephrin expression will be useful for conditional gene targeting of essential podocyte proteins and to study in detail their functions in the adult mice. This is important for future diagnostic and pharmacologic development platforms.
Resumo:
Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 x 10(-)(9), odds ratio = 1.23, 95% CI 1.150-1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 x 10(-)(1)(1) (odds ratio = 1.18, 95% CI 1.127-1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 x 10(-)(5), permuted threshold for genome-wide significance 7.7 x 10(-)(5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.
Resumo:
Context: Identifying susceptibility genes for schizophrenia may be complicated by phenotypic heterogeneity, with some evidence suggesting that phenotypic heterogeneity reflects genetic heterogeneity. Objective: To evaluate the heritability and conduct genetic linkage analyses of empirically derived, clinically homogeneous schizophrenia subtypes. Design: Latent class and linkage analysis. Setting: Taiwanese field research centers. Participants: The latent class analysis included 1236 Han Chinese individuals with DSM-IV schizophrenia. These individuals were members of a large affected-sibling-pair sample of schizophrenia (606 ascertained families), original linkage analyses of which detected a maximum logarithm of odds (LOD) of 1.8 (z = 2.88) on chromosome 10q22.3. Main Outcome Measures: Multipoint exponential LOD scores by latent class assignment and parametric heterogeneity LOD scores. Results: Latent class analyses identified 4 classes, with 2 demonstrating familial aggregation. The first (LC2) described a group with severe negative symptoms, disorganization, and pronounced functional impairment, resembling “deficit schizophrenia.” The second (LC3) described a group with minimal functional impairment, mild or absent negative symptoms, and low disorganization. Using the negative/deficit subtype, we detected genome-wide significant linkage to 1q23-25 (LOD = 3.78, empiric genome-wide P = .01). This region was not detected using the DSM-IV schizophrenia diagnosis, but has been strongly implicated in schizophrenia pathogenesis by previous linkage and association studies.Variants in the 1q region may specifically increase risk for a negative/deficit schizophrenia subtype. Alternatively, these results may reflect increased familiality/heritability of the negative class, the presence of multiple 1q schizophrenia risk genes, or a pleiotropic 1q risk locus or loci, with stronger genotype-phenotype correlation with negative/deficit symptoms. Using the second familial latent class, we identified nominally significant linkage to the original 10q peak region. Conclusion: Genetic analyses of heritable, homogeneous phenotypes may improve the power of linkage and association studies of schizophrenia and thus have relevance to the design and analysis of genome-wide association studies.
Resumo:
Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.
Resumo:
Aims: Helicobacter pylori infection, although the prevalence is declining in Western world, is still responsible for several clinically important diseases. None of the diagnostic tests is perfect and in this study, the performance of three stool antigen tests was assessed. In areas of high H. pylori prevalence, the definition of patients with the greatest benefit from eradication therapy may be a problem; the role of duodenal gastric metaplasia in categorizing patients at risk for duodenal ulcer was evaluated in this respect. Whether persistent chronic inflammation and elevated H. pylori antibodies after successful eradication are associated with each other or with atrophic gastritis, a long term sequelae of H. pylori infection, were also studied. Patients and methods: The three stool antigen tests were assessed in pre- and post-eradication settings among 364 subjects in two studies as compared to the rapid urease test (RUT), histology, culture, the 13C-urea breath test (UBT) and enzyme immunoassay (EIA) based H. pylori serology. The association between duodenal gastric metaplasia with duodenal ulcer was evaluated in a retrospective study including 1054 patients gastroscopied due to clinical indications and 154 patients previously operated for duodenal ulcer. The extent of duodenal gastric metaplasia was assessed from histological specimens in different patient groups formed on the basis of gastroscopy findings and H. pylori infection. Chronic gastric inflammation (108 patients) and H. pylori antibodies and serum markers for atrophy (77 patients) were assessed in patients earlier treated for H. pylori. Results: Of the stool antigen tests studied, the monoclonal antibody-based EIA-test showed the highest sensitivity and specificity both in the pre-treatment setting (96.9% and 95.9%) and after therapy (96.9% and 97.8%). The polyclonal stool antigen test and the in-office test had at baseline a sensitivity of 91% and 94%, and a specificity of 96% and 89%, respectively and in a post-treatment setting, a sensitivity of 78% and 91%, and a specificity of 97%, respectively. Duodenal gastric metaplasia was strongly associated with H. pylori positive duodenal ulcer (odds ratio 42). Although common still five years after eradication, persistent chronic gastric inflammation (21%) and elevated H. pylori antibodies (33%) were neither associated with each other nor with atrophic gastritis. Conclusions: Current H. pylori infection can feasibly be diagnosed by a monoclonal antibody-based EIA test with the accuracy comparable to that of reference methods. The performance of the polyclonal test as compared to the monoclonal test was inferior especially in the post-treatment setting. The in-office test had a low specificity for primary diagnosis and hence positive test results should probably be confirmed with another test before eradication therapy is prescribed. The presence of widespread duodenal gastric metaplasia showed promising results in detecting patients who should be treated for H. pylori due to an increased risk of duodenal ulcer. If serology is used later on in patients with earlier successfully treated for H. pylori, it should be taken into account that H. pylori antibodies may persist elevated for years for unknown reason. However, this phenomenon was not found to be associated with persistent chronic inflammation or atrophic changes.
Resumo:
Malignant mesothelioma (MM) is a rare, usually incurable, disease mainly caused by former exposure to asbestos. Even though MM has a strong etiological link, genetic factors may play a role, since not all cases can be linked to former asbestos exposure. This thesis focuses on lung diseases, mainly malignant mesothelioma (MM), and idiopathic pulmonary fibrosis (IPF), which resembles asbestosis. The specific asbestos-related pathways associated with malignant as well as non-malignant lung diseases, still need to be clarified. Since most patients diagnosed with MM or asbestosis/fibrosis have a dismal prognosis and few therapeutic options are available, early diagnosis and better understanding of the disease pathogenesis are of the utmost importance. The first objective of this thesis was to identify asbestos specific differentially expressed genes. This was approached by using high-resolution gene expression arrays, and three different human lung cell lines, as well as with three different bioinformatics approaches. Since the first study aimed to elucidate potential early changes, the second study was used to screen DNA copy number changes in MM tumour samples. This was performed using genome wide microarrays for identification of DNA copy number changes characterstic for MM. Study III focused on the role of gremlin in the regulation of bone morphogenetic protein (BMPs) in IPF. Further studies were conducted in asbestos-exposed cell cultures as well as in an asbestos-induced mouse model. Furthermore, GATA-6 was studied in MM and metastatic pleural adenocarcinoma. The GATA transcription factors are important during embryonic development, but their role in cancer is still unclear. GATA-6 is a co-factor/target of thyroid transcription factor 1 (TTF-1), which is used in differential diagnostics of pleural MM and adenocarcinoma. Bioinformatics probed the genes and biological processes ordered in terms of significance, clusters, and highly enriched chromosomal regions. The study revealed several already identified targets, produced new ideas about genes which are central for asbestos exposure, as well as provided supplementary data for researchers to check their own novel findings or ideas. The analysis revealed DNA copy number changes characteristic for MM tumors. The most common regions of loss were detected in 1p, 3p, 6q, 9p, 13, 14, and 22, and gains at 17q. The histological features in asbestosis and IPF are very similar, wherefore IPF can be studied in asbestos models. The BMP antagonist gremlin was up-regulated by asbestos exposure in human epithelial cell lines, which was also observed in Study I. The transforming growth factor (TGF) -β and BMP expression and signaling activities were measured from murine and human fibrotic lungs. BMP-7 signaling was down-regulated in response to up-regulation of gremlin, and restoration of BMP-7 signaling prevented progression of fibrosis in mice. Therefore, the study suggests that the restoration of BMP-7 signaling in fibrotic lung could potentially aid in the treatment of IPF patients. Study IV revealed that GATA-6 was strongly expressed in the majority of the MM cases, and correlated statistically significant with longer survival in subgroups of MM.
Resumo:
Disorders resulting from degenerative changes in the nervous system are progressive and incurable. Both environmental and inherited factors affect neuron function, and neurodegenerative diseases are often the sum of both factors. The cellular events leading to neuronal death are still mostly unknown. Monogenic diseases can offer a model for studying the mechanisms of neurodegeneration. Neuronal ceroid lipofuscinoses, or NCLs, are a group of monogenic, recessively inherited diseases affecting mostly children. NCLs cause severe and specific loss of neurons in the central nervous system, resulting in the deterioration of motor and mental skills and leading to premature death. In this thesis, the focus has been on two forms of NCL, the infantile NCL (INCL, CLN1) and the Finnish variant of late infantile NCL (vLINCLFin, CLN5). INCL is caused by mutations in the CLN1 gene encoding for the PPT1 (palmitoyl protein thioesterase 1) enzyme. PPT1 removes a palmitate moiety from proteins in experimental conditions, but its substrates in vivo are not known. In the Finnish variant of late infantile NCL (vLINCLFin), the CLN5 gene is defective, but the function of the encoded CLN5 has remained unknown. The aim of this thesis was to elucidate the disease mechanisms of these two NCL diseases by focusing on the molecular interactions of the defective proteins. In this work, the first interaction partner for PPT1, the mitochondrial F1-ATP synthase, was described. This protein has been linked to HDL metabolism in addition to its well-known role in the mitochondrial energy production. The connection between PPT1 and the F1-ATP synthase was studied utilizing the INCL-disease model, the genetically modified Ppt1-deficient mice. The levels of F1-ATP synthase subunits were increased on the surface of Ppt1-deficient neurons when compared to controls. We also detected several changes in lipid metabolism both at the cellular and systemic levels in Ppt1-deficient mice when compared to controls. The interactions between different NCL proteins were also elucidated. We were able to detect novel interactions between CLN5 and other NCL proteins, and to replicate the previously reported interactions. Some of the novel interactions influenced the intracellular trafficking of the proteins. The multiple interactions between CLN5 and other NCL proteins suggest a connection between the NCL subtypes at the cellular level. The main results of this thesis elicit information about the neuronal function of PPT1. The connection between INCL and neuronal lipid metabolism introduces a new perspective to this rather poorly characterized subject. The evidence of the interactions between NCL proteins provides the basis for future research trying to untangle the NCL disease mechanisms and to develop strategies for therapies.
Resumo:
Along with the increased life span of individuals, the burden of old age-associated diseases has inevitably increased. Alzheimer s disease (AD), probably the most well known geriatric disease, belongs to the old age-associated amyloid diseases. The purpose of this study was to investigate the frequency, genetic and health-associated risk factors, mutual association, and amyloid proteins in two old age-associated amyloid disorders senile systemic amyloidosis (SSA) and cerebral amyloid angiopathy (CAA) as part of the prospective population-based Vantaa 85+ autopsy study on a Finnish population aged 85 years or more (Studies I-III), completed with a case report on a patient with advanced AGel amyloidosis (Study IV). The numbers of patients investigated in the studies (I-III) were 256, 74, and 63, respectively. The diagnosis and grading of amyloid were based upon histological examination of tissue samples obtained post mortem and stained with Congo red. The amyloid fibril and associated proteins were characterized by immunohistochemical staining methods. The genotype frequencies of 20 polymorphisms in 9 genes and information on health-associated risk factors in subjects with and without SSA and CAA were compared. In a Finnish population ≥ 95 years of age, SSA and CAA occurred in 36% and 49% of the subjects, respectively. In total, two-thirds of these very elderly individuals had SSA, CAA, or both. However, in only 14% of the population these two conditions co-occurred. In subjects 85 years or older, the prevalence of SSA was 25%. In this population, SSA was associated with age at the time of death (p=0.002), myocardial infarctions (MIs; p=0.004), the G/G (Val/Val) genotype of the exon 24 polymorphism in the alpha2-macroglobulin (α2M) gene (p=0.042) and with the H2 haplotype of the tau gene (p=0.016). In contrast, the presence of CAA was strongly associated with APOE e4 (p=0.0003), with histopathological AD (p=0.0005), and with clinical dementia (p=0.01) in both e4+ (p=0.02) and e4- (p=0.06) individuals. Apart from demonstrating the amyloid fibril proteins, complement proteins 3d (C3d) and 9 (C9) were detected in the amyloid deposits of CAA and AGel amyloidosis, and α2M protein was found in fibrous scar tissue close to SSA. In conclusion, this first population based study on SSA shows that both SSA and CAA are common in very elderly individuals. Old age, MIs, the exon 24 polymorphism of the α2M gene, and H1/H2 polymorphism of the tau gene associate with SSA while clinical dementia and APOE ε4 genotype associate with CAA. The high prevalence of CAA, combined with its association with clinical dementia independent of APOE genotype, neuropathological AD, or SSA, also highlights its clinical significance in the very aged, among which the serious end stage complications of CAA, namely multiple infarctions and hemorrhages, are rare. The report on a patient having advanced AGel amyloidosis added knowledge on the disease and showed that this generally benign condition occasionally may lead to death. Further studies are warranted to confirm the findings in other populations. Also, the role of α2M and tau in the pathogenesis of SSA and the involvement of complement in the process of amyloid beta (Aβ) protein elimination from the brain remain to be clarified. Finally, the high prevalence of SSA in the elderly raises the need for prospective clinical studies to define its clinical significance.
Resumo:
The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case-control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case-control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out.
Resumo:
Traditionally twins are classified as dizygous or fraternal and monozygous or identical (Hall Twinning, 362, 2003 and 735-743). We report a rare case of 46,XX/46,XY twins: Twin A presented with ambiguous genitalia and Twin B was a phenotypically normal male. These twins demonstrate a third, previously unreported mechanism for twinning. The twins underwent initial investigation with 17-hydroxyprogesterone and testosterone levels, pelvic ultrasound and diagnostic laparoscopy. Cytogenetic analysis was performed on peripheral blood cells and skin fibroblasts. Histological examination and Fluorescence in situ hybridization studies on touch imprints were performed on gonadal biopsies. DNA analysis using more than 6,000 DNA markers was performed on skin fibroblast samples from the twins and on peripheral blood samples from both parents. Twin A was determined to be a true hermaphrodite and Twin B an apparently normal male. Both twins had a 46,XX/46,XY chromosome complement in peripheral lymphocytes, skin fibroblasts, and gonadal biopsies. The proportion of XX to XY cells varied between the twins and the tissues evaluated. Most significantly the twins shared 100% of maternal alleles and approximately 50% of paternal alleles in DNA analysis of skin fibroblasts. The twins are chimeric and share a single genetic contribution from their mother but have two genetic contributions from their father thus supporting the existence of a third, previously unreported type of twinning.
Resumo:
It is often debated whether migraine with aura (MA) and migraine without aura (MO) are etiologically distinct disorders. A previous study using latent class analysis (LCA) in Australian twins showed no evidence for separate subtypes of MO and MA. The aim of the present study was to replicate these results in a population of Dutch twins and their parents, siblings and partners (N = 10,144). Latent class analysis of International Headache Society (IHS)-based migraine symptoms resulted in the identification of 4 classes: a class of unaffected subjects (class 0), a mild form of nonmigrainous headache (class 1), a moderately severe type of migraine (class 2), typically without neurological symptoms or aura (8% reporting aura symptoms), and a severe type of migraine (class 3), typically with neurological symptoms, and aura symptoms in approximately half of the cases. Given the overlap of neurological symptoms and nonmutual exclusivity of aura symptoms, these results do not support the MO and MA subtypes as being etiologically distinct. The heritability in female twins of migraine based on LCA classification was estimated at .50 (95% confidence intervals [CI] .27 - .59), similar to IHS-based migraine diagnosis (h2 = .49, 95% CI .19-.57). However, using a dichotomous classification (affected-unaffected) decreased heritability for the IHS-based classification (h2 = .33, 95% CI .00-.60), but not the LCA-based classification (h2 = .51, 95% CI .23-.61). Importantly, use of the LCA-based classification increased the number of subjects classified as affected. The heritability of the screening question was similar to more detailed LCA and IHS classifications, suggesting that the screening procedure is an important determining factor in genetic studies of migraine.