931 resultados para Gold Nanoparticles, SPR, Synthesis, Optical Properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for materials with high consistency obtained at relatively low temperatures has been leveraging the search for chemical processes substituents of the conventional ceramic method. This paper aims to obtain nanosized pigments encapsulated (core-shell) the basis of TiO2 doped with transition metals (Fe, Co, Ni, Al) through three (3) methods of synthesis: polymeric precursors (Pechini); hydrothermal microwave, and co-precipitation associated with the sol-gel chemistry. The study was motivated by the simplicity, speed and low power consumption characteristic of these methods. Systems costs are affordable because they allow achieving good control of microstructure, combined with high purity, controlled stoichiometric phases and allowing to obtain particles of nanometer size. The physical, chemical, morphological, structural and optical properties of the materials obtained were analyzed using different techniques for materials characterization. The powder pigments were tested in discoloration and degradation using a photoreactor through the solution of Remazol yellow dye gold (NNI), such as filtration, resulting in a separation of solution and the filter pigments available for further UV-Vis measurements . Different calcination temperatures taken after obtaining the post, the different methods were: 400 º C and 1000 º C. Using a fixed concentration of 10% (Fe, Al, Ni, Co) mass relative to the mass of titanium technologically and economically enabling the study. By transmission electron microscopy (TEM) technique was possible to analyze and confirm the structural formation nanosized particles of encapsulated pigment, TiO2 having the diameter of 20 nm to 100 nm, and thickness of coated layer of Fe, Ni and Co between 2 nm and 10 nm. The method of synthesis more efficient has been studied in the work co-precipitation associated with sol-gel chemistry, in which the best results were achieved without the need for the obtainment of powders the calcination process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotechnology is a multidisciplinary science that is having a boom today, providing new products with attractive physicochemical properties for many applications. In agri/feed/food sector, nanotechnology offers great opportunities for obtaining products and innovative applications for agriculture and livestock, water treatment and the production, processing, storage and packaging of food. To this end, a wide variety of nanomaterials, ranging from metals and inorganic metal oxides to organic nanomaterials carrying bioactive ingredients are applied. This review shows an overview of current and future applications of nanotechnology in the food industry. Food additives and materials in contact with food are now the main applications, while it is expected that in the future are in the field of nano-encapsulated and nanocomposites in applications as novel foods, additives, biocides, pesticides and materials food contact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: Gold nanoparticles have attracted significant interest in cancer diagnosis and treatment. Herein, we evaluated the theranostic potential of dithiolated diethylenetriamine pentaacetic acid (DTDTPA) conjugated AuNPs (Au@DTDTPA) for CT-contrast enhancement and radiosensitization in prostate cancer.

MATERIALS & METHODS: In vitro assays determined Au@DTDTPA uptake, cytotoxicity, radiosensitizing potential and DNA damage profiles. Human PC3 xenograft tumor models were used to determine CT enhancement and radiation modulating effects in vivo.

RESULTS: Cells exposed to nanoparticles and radiation observed significant additional reduction in survival compared with radiation only. Au@DTDTPA produced a CT enhancement of 10% and a significant extension in tumor growth delay from 16.9 days to 38.3 compared with radiation only.

CONCLUSION: This study demonstrates the potential of Au@DTDTPA to enhance CT-image contrast and simultaneously increases the radiosensitivity of prostate tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strong progress evidenced in photonic and optoelectronic areas, accompanied by an exponential development in the nanoscience and nanotechnology, gave rise to an increasing demand for efficient luminescent materials with more and more exigent characteristics. In this field, wide band gap hosts doped with lanthanide ions represent a class of luminescent materials with a strong technological importance. Within wide band gap material, zirconia owns a combination of physical and chemical properties that potentiate it as an excellent host for the aforementioned ions, envisaging its use in different areas, including in lighting and optical sensors applications, such as pressure sensors and biosensors. Following the demand for outstanding luminescent materials, there is also a request for fast, economic and an easy scale-up process for their production. Regarding these demands, laser floating zone, solution combustion synthesis and pulsed laser ablation in liquid techniques are explored in this thesis for the production of single crystals, nanopowders and nanoparticles of lanthanides doped zirconia based hosts. Simultaneously, a detailed study of the morphological, structural and optical properties of the produced materials is made. The luminescent characteristics of zirconia and yttria stabilized zirconia (YSZ) doped with different lanthanide ions (Ce3+ (4f1), Pr3+ (4f2), Sm3+ (4f5), Eu3+ (4f6), Tb3+ (4f8), Dy3+ (4f9), Er3+ (4f11), Tm3+ (4f12), Yb3+ (4f13)) and co-doped with Er3+,Yb3+ and Tm3+,Yb3+ are analysed. Besides the Stokes luminescence, the anti- Stokes emission upon infrared excitation (upconversion and black body radiation) is also analysed and discussed. The comparison of the luminescence characteristics in materials with different dimensions allowed to analyse the effect of size in the luminescent properties of the dopant lanthanide ions. The potentialities of application of the produced luminescent materials in solid state light, biosensors and pressure sensors are explored taking into account their studied characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manipulation of single cells and particles is important to biology and nanotechnology. Our electrokinetic (EK) tweezers manipulate objects in simple microfluidic devices using gentle fluid and electric forces under vision-based feedback control. In this dissertation, I detail a user-friendly implementation of EK tweezers that allows users to select, position, and assemble cells and nanoparticles. This EK system was used to measure attachment forces between living breast cancer cells, trap single quantum dots with 45 nm accuracy, build nanophotonic circuits, and scan optical properties of nanowires. With a novel multi-layer microfluidic device, EK was also used to guide single microspheres along complex 3D trajectories. The schemes, software, and methods developed here can be used in many settings to precisely manipulate most visible objects, assemble objects into useful structures, and improve the function of lab-on-a-chip microfluidic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water treatment using photocatalysis has gained extensive attention in recent years. Photocatalysis is promising technology from green chemistry point of view. The most widely studied and used photocatalyst for decomposition of pollutants in water under ultraviolet irradiation is TiO2 because it is not toxic, relatively cheap and highly active in various reactions. Within this thesis unmodified and modified TiO2 materials (powders and thin films) were prepared. Physico-chemical properties of photocatalytic materials were characterized with UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, time-of-flight secondary ion mass spectrometry (ToF-SIMS), Raman spectroscopy, goniometry, diffuse reflectance measurements, thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. Photocatalytic activity of prepared samples in aqueous environment was tested using model compounds such as phenol, formic acid and metazachlor. Also purification of real pulp and paper wastewater effluent was studied. Concentration of chosen pollutants was measured with high pressure liquid chromatography (HPLC). Mineralization and oxidation of organic contaminants were monitored with total organic carbon (TOC) and chemical oxygen demand (COD) analysis. Titanium dioxide powders prepared via sol-gel method and doped with dysprosium and praseodymium were photocatalytically active for decomposition of metazachlor. The highest degradation rate of metazachlor was observed when Pr-TiO2 treated at 450ºC (8h) was used. The photocatalytic LED-based treatment of wastewater effluent from plywood mill using commercially available TiO2 was demonstrated to be promising post-treatment method (72% of COD and 60% of TOC was decreased after 60 min of irradiation). The TiO2 coatings prepared by atomic layer deposition technique on aluminium foam were photocatalytically active for degradation of formic and phenol, however suppression of activity was observed. Photocatalytic activity of TiO2/SiO2 films doped with gold bipyramid-like nanoparticles was about two times higher than reference, which was not the case when gold nanospheres were used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution-grown colloidal nanocrystal (NC) materials represent ideal candidates for optoelectronic devices, due to the flexibility with which they can be synthesized, the ease with which they can be processed for devicefabrication purposes and, foremost, for their excellent and size-dependent tunable optical properties, such as high photoluminescence (PL) quantum yield, color purity, and broad absorption spectra up to the near infrared. The advent of surfactant-assisted synthesis of thermodynamically stable colloidal solutions of NCs has led to peerless results in terms of uniform size distribution, composition, rational shape-design and the possibility of building heterostructured NCs (HNCs) comprising two or more different materials joined together. By tailoring the composition, shape and size of each component, HNCs with gradually higher levels of complexity have been conceived and realized, which are endowed with outstanding characteristics and optoelectronic properties. In this review, we discuss recent advances in the design of HNCs for efficient light-emitting diodes (LEDs) and photovoltaic (PV) solar cell devices. In particular, we will focus on the materials required to obtain superior optoelectronic quality and efficient devices, as well as their preparation and processing potential and limitations