920 resultados para Geometric Goppa Codes
Resumo:
MCNP has stood so far as one of the main Monte Carlo radiation transport codes. Its use, as any other Monte Carlo based code, has increased as computers perform calculations faster and become more affordable along time. However, the use of Monte Carlo method to tally events in volumes which represent a small fraction of the whole system may turn to be unfeasible, if a straight analogue transport procedure (no use of variance reduction techniques) is employed and precise results are demanded. Calculations of reaction rates in activation foils placed in critical systems turn to be one of the mentioned cases. The present work takes advantage of the fixed source representation from MCNP to perform the above mentioned task in a more effective sampling way (characterizing neutron population in the vicinity of the tallying region and using it in a geometric reduced coupled simulation). An extended analysis of source dependent parameters is studied in order to understand their influence on simulation performance and on validity of results. Although discrepant results have been observed for small enveloping regions, the procedure presents itself as very efficient, giving adequate and precise results in shorter times than the standard analogue procedure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.
Resumo:
Based only on the parallel-transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee`s non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non- Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature. Copyright (c) EPLA, 2008.
Resumo:
Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009
Resumo:
Structured meaning-signal mappings, i.e., mappings that preserve neighborhood relationships by associating similar signals with similar meanings, are advantageous in an environment where signals are corrupted by noise and sub-optimal meaning inferences are rewarded as well. The evolution of these mappings, however, cannot be explained within a traditional language evolutionary game scenario in which individuals meet randomly because the evolutionary dynamics is trapped in local maxima that do not reflect the structure of the meaning and signal spaces. Here we use a simple game theoretical model to show analytically that when individuals adopting the same communication code meet more frequently than individuals using different codes-a result of the spatial organization of the population-then advantageous linguistic innovations can spread and take over the population. In addition, we report results of simulations in which an individual can communicate only with its K nearest neighbors and show that the probability that the lineage of a mutant that uses a more efficient communication code becomes fixed decreases exponentially with increasing K. These findings support the mother tongue hypothesis that human language evolved as a communication system used among kin, especially between mothers and offspring.
Resumo:
We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.
Resumo:
Woodworking industries still consists of wood dust problems. Young workers are especially vulnerable to safety risks. To reduce risks, it is important to change attitudes and increase knowledge about safety. Safety training have shown to establish positive attitudes towards safety among employees. The aim of current study is to analyze the effect of QR codes that link to Picture Mix EXposure (PIMEX) videos by analyzing attitudes to this safety training method and safety in student responses. Safety training videos were used in upper secondary school handicraft programs to demonstrate wood dust risks and methods to decrease exposure to wood dust. A preliminary study was conducted to investigate improvement of safety training in two schools in preparation for the main study that investigated a safety training method in three schools. In the preliminary study the PIMEX method was first used in which students were filmed while wood dust exposure was measured and subsequently displayed on a computer screen in real time. Before and after the filming, teachers, students, and researchers together analyzed wood dust risks and effective measures to reduce exposure to them. For the main study, QR codes linked to PIMEX videos were attached at wood processing machines. Subsequent interviews showed that this safety training method enables students in an early stage of their life to learn about risks and safety measures to control wood dust exposure. The new combination of methods can create awareness, change attitudes and motivation among students to work more frequently to reduce wood dust.
Resumo:
If you’ve made it this far—and I’m sure many of you have—then you know what this article is about: QR codes, or Quick Response codes (also referred to, though less frequently, as mobile codes 2d barcodes, or 2d codes). QRs are not new by any stretch of the imagination. In fact, they’ve been around for about a decade and a half.
Resumo:
Este trabalho compõe-se de duas partes. A primeira parte propõe-se a apresentar um estudo e um programa computacional para a análise não linear geométrica de treliças planas com propriedades: viscoelásticas. Na segunda parte, tem-se o estudo e um programa sobre pórticos planos com propriedades viscoelásticas, usando o modelo reológico standard e o dado pelo CEB. Leva-se em consideração o efeito de temperatura e retração nesta análise. Estende-se o trabalho sobre pórtico para o estudo sobre vigas mistas, levando em consideração a mudança da linha neutra. A formulação está baseada no método dos elementos finitos para grandes deformações, particularizada para treliça e pórtico. É feita a descrição de ambos os programas e rodados diversos exemplos.
Resumo:
We discuss geometric properties related to the minimisation of a portfolio kurtosis given its first two odd moments, considering a risk-less asset and allowing for short sales. The findings are generalised for the minimisation of any given even portfolio moment with fixed excess return and skewness, and then for the case in which only excess return is constrained. An example with two risky assets provides a better insight on the problems related to the solutions. The importance of the geometric properties and their use in the higher moments portfolio choice context is highlighted.
Resumo:
We characterize optimal policy in a two-sector growth model with xed coeÆcients and with no discounting. The model is a specialization to a single type of machine of a general vintage capital model originally formulated by Robinson, Solow and Srinivasan, and its simplicity is not mirrored in its rich dynamics, and which seem to have been missed in earlier work. Our results are obtained by viewing the model as a specific instance of the general theory of resource allocation as initiated originally by Ramsey and von Neumann and brought to completion by McKenzie. In addition to the more recent literature on chaotic dynamics, we relate our results to the older literature on optimal growth with one state variable: speci cally, to the one-sector setting of Ramsey, Cass and Koopmans, as well as to the two-sector setting of Srinivasan and Uzawa. The analysis is purely geometric, and from a methodological point of view, our work can be seen as an argument, at least in part, for the rehabilitation of geometric methods as an engine of analysis.