985 resultados para Generalized Functions
Resumo:
The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity.
Resumo:
The aim of this dissertation is to introduce Bessel functions to the reader, as well as studying some of their properties. Moreover, the final goal of this document is to present the most well- known applications of Bessel functions in physics.
Resumo:
This contribution illustrates how modern spreadsheets aid the calculation and visualization of yield models and how the effects of uncertainties may be incorporated using Monte Carlo simulation. It is argued that analogous approaches can be implemented for other assessment models of simple to medium complexity justifying wider use of spreadsheets in fisheries analysis and training.
Resumo:
The simple model relating food conversion efficiency (K sub(1)) to body weight derived from the theoretical concepts behind von Bertalanffy's growth model, is extended here in the context of Pauly's generalization of that model. The exponent, which was fixed to 1/3 in the simple model, is in the extended model equivalent to 1-d, with d being the weight exponent of the anabolism term in Pauly's growth model. This makes the model applicable to fish for which the assumptions of the original (special) version of von Bertalanffy's growth model are violated.
Resumo:
Azeotropia é um fenômeno termodinâmico onde um líquido em ebulição produz um vapor com composição idêntica. Esta situação é um desafio para a Engenharia de Separação, já que os processos de destilação exploram as diferenças entre as volatilidades relativas e, portanto, um azeótropo pode ser uma barreira para a separação. Em misturas binárias, o cálculo da azeotropia é caracterizado por um sistema não-linear do tipo 2 × 2. Um interessante e raro caso é o denominado azeotropia dupla, que pode ser verificado quando este sistema não-linear tem duas soluções, correspondendo a dois azeótropos distintos. Diferentes métodos tem sido utilizados na resolução de problemas desta natureza, como métodos estocásticos de otimização e as técnicas intervalares (do tipo Newton intervalar/bisseção generalizada). Nesta tese apresentamos a formulação do problema de azeotropia dupla e uma nova e robusta abordagem para a resolução dos sistemas não-lineares do tipo 2 × 2, que é a inversão de funções do plano no plano (MALTA; SALDANHA; TOMEI, 1996). No método proposto, as soluções são obtidas através de um conjunto de ações: obtenção de curvas críticas e de pré-imagens de pontos arbritários, inversão da função e por fim, as soluções esperadas para o problema de azeotropia. Esta metodologia foi desenvolvida para resolver sistemas não-lineares do tipo 2 × 2, tendo como objetivo dar uma visão global da função que modela o fenômeno em questão, além, é claro, de gerar as soluções esperadas. Serão apresentados resultados numéricos para o cálculo dos azeótropos no sistema benzeno + hexafluorobenzeno a baixas pressões por este método de inversão. Como ferramentas auxiliares, serão também apresentados aspectos numéricos usando aproximações clássicas, tais como métodos de Newton com técnicas de globalização e o algorítmo de otimização não-linear C-GRASP, para efeito de comparação.