991 resultados para Functional polymorphism
Resumo:
Complex sex-determination systems are a priori unstable and require specific selective forces for their maintenance. Analytical derivations have suggested that sex-antagonistic selection may play such a role, but this assumed absence of recombination between the sex-determining and sex-antagonistic genes. Using individual-based simulations, and focusing on the sex chromosome and coloration polymorphisms of platy fishes as a case study, we show that the conditions for polymorphism maintenance induce female-biases in primary sex ratios, so that sex-ratio selection makes the system collapse towards male- or female heterogamety as soon as recombinant genotypes appear. However, a polymorphism can still be maintained under scenarios comprising strong sexual selection against dull males, mild natural selection against bright females, and low recombination rates. Though such conditions are plausibly met in natural populations of fishes harbouring such polymorphisms, quantitative empirical evaluations are required to properly test whether sex-antagonistic selection is a causal agent, or if other selective processes are required (such as local mate competition favouring female biased sex ratios).
Resumo:
Monocytes serve as a central defense system against infection and injury but can also promote pathological inflammatory responses. Considering the evidence that monocytes exist in at least two subsets committed to divergent functions, we investigated whether distinct factors regulate the balance between monocyte subset responses in vivo. We identified a microRNA (miRNA), miR-146a, which is differentially regulated both in mouse (Ly-6C(hi)/Ly-6C(lo)) and human (CD14(hi)/CD14(lo)CD16(+)) monocyte subsets. The single miRNA controlled the amplitude of the Ly-6C(hi) monocyte response during inflammatory challenge whereas it did not affect Ly-6C(lo) cells. miR-146a-mediated regulation was cell-intrinsic and depended on Relb, a member of the noncanonical NF-κB/Rel family, which we identified as a direct miR-146a target. These observations not only provide mechanistic insights into the molecular events that regulate responses mediated by committed monocyte precursor populations but also identify targets for manipulating Ly-6C(hi) monocyte responses while sparing Ly-6Clo monocyte activity.
Resumo:
Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1,000,000 hits from 462,500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk.
Resumo:
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Resumo:
Colour polymorphism is widespread among vertebrates and plays important roles in prey-predator interactions, thermoregulation, social competition, and sexual selection. However, the genetic mechanisms involved in colour variation have been studied mainly in domestic mammals and birds, whereas information on wild animals remains scarce. Interestingly, the pro-opiomelanocortin gene (POMC) gives rise to melanocortin hormones that trigger melanogenesis (by binding the melanocortin-1-receptor; Mc1r) and other physiological and behavioural functions (by binding the melanocortin receptors Mc1-5rs). Owing to its pleiotropic effect, the POMC gene could therefore account for the numerous covariations between pigmentation and other phenotypic traits. We screened the POMC and Mc1r genes in 107 wild asp vipers (Vipera aspis) that can exhibit four discrete colour morphs (two unpatterned morphs: concolor or melanistic; two patterned morphs: blotched or lined) in a single population. Our study revealed a correlation between a single nucleotide polymorphism situated within the 3-untranslated region of the POMC gene and colour variation, whereas Mc1r was not found to be polymorphic. To the best of our knowledge, we disclose for the first time a relationship between a mutation at the POMC gene and coloration in a wild animal, as well as a correlation between a genetic marker and coloration in a snake species. Interestingly, similar mutations within the POMC 3-untranslated region are linked to human obesity and alcohol and drug dependence. Combined with our results, this suggests that the 3-untranslated region of the POMC gene may play a role in its regulation in distant vertebrates.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
OBJECTIVES: To determine the relationship between infections and functional impairment in nursing home residents. DESIGN: Prospective cohort study (follow-up period, 6 months). SETTING: Thirty-nine nursing homes in western Switzerland. PARTICIPANTS: A total of 1,324 residents aged 65 and older (mean age 85.7; 76.6% female) who agreed to participate, or their proxies, by oral informed consent. MEASUREMENTS: Functional status measured every 3 months. Two different outcomes were used: (a) functional decline defined as death or decreased function at follow-up and (b) functional status score using a standardized measure. RESULTS: At the end of follow-up, mortality was 14.6%, not different for those with and without infection (16.2% vs 13.1%, P=.11). During both 3-month periods, subjects with infection had higher odds of functional decline, even after adjustment for baseline characteristics and occurrence of a new illness (adjusted odds ratio (AOR)=1.6, 95% confidence interval (CI)=1.2-2.2, P=.002, and AOR=1.5, 95% CI=1.1-2.0, P=.008, respectively). The odds of decline increased in a stepwise fashion in patients with zero, one, and two or more infections. The analyses predicting functional status score (restricted to subjects who survived) gave similar results. A survival analysis predicting time to first infection confirmed a stepwise greater likelihood of infection in subjects with moderate and severe impairment at baseline than in subjects with no or mild functional impairment at baseline. CONCLUSION: Infections appear to be both a cause and a consequence of functional impairment in nursing home residents. Further studies should be undertaken to investigate whether effective infection control programs can also contribute to preventing functional decline, an important component of these residents' quality of life.
Resumo:
We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the onedimensional equation is a contraction with respect to Fourier distance in the subcritical case.
Resumo:
Purpose: Dynamic high-field magnetic resonance (MR) defecography including the evacuation phase is a promising tool for the assessment of functional pelvic disorders, nowadays seen with increasing frequency in elderly women in particular. Learning objectives: 1. To describe the adequate technique of dynamic high-field MRI (3T) in assessing pelvic floor disorders. 2. To provide an overview of the most common pathologies occurring during the evacuation phase, especially in comparison with results of conventional defecography. Methods and materials: After description of the ideal technical parameters of MR defecography performed in supine position after gel rectal filling with a 3 Tesla unit and including the evacuation phase we stress the importance of using a standardized evaluation system for the exact assessment of pelvic floor pathophysiology. Results: The typical pelvic floor disorders occurring before and/or during the evacuation phase, such as sphincter insufficiency, vaginal vault and/or uterine prolapse, cystourethrocele, peritoneo-/ entero-/ sigmoïdocele or rectal prolapse, are demonstrated. The difference between the terms "pelvic floor descent" and "pelvic floor relaxation" are pictorially outlined. MR results are compared with these of conventional defecography. Conclusion: Exact knowledge about the correct technique including the evacuation phase and the use of a standardized evaluation system in assessing pelvic floor disorders by dynamic high-field MRI is mandatory for accurate and reproducible diagnosis.
Resumo:
Several members of the FXYD protein family are tissue-specific regulators of Na,K-ATPase that produce distinct effects on its apparent K(+) and Na(+) affinity. Little is known about the interaction sites between the Na,K-ATPase alpha subunit and FXYD proteins that mediate the efficient association and/or the functional effects of FXYD proteins. In this study, we have analyzed the role of the transmembrane segment TM9 of the Na,K-ATPase alpha subunit in the structural and functional interaction with FXYD2, FXYD4, and FXYD7. Mutational analysis combined with expression in Xenopus oocytes reveals that Phe(956), Glu(960), Leu(964), and Phe(967) in TM9 of the Na,K-ATPase alpha subunit represent one face interacting with the three FXYD proteins. Leu(964) and Phe(967) contribute to the efficient association of FXYD proteins with the Na,K-ATPase alpha subunit, whereas Phe(956) and Glu(960) are essential for the transmission of the functional effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. The relative contribution of Phe(956) and Glu(960) to the K(+) effect differs for different FXYD proteins, probably reflecting the intrinsic differences of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. In contrast to the effect on the apparent K(+) affinity, Phe(956) and Glu(960) are not involved in the effect of FXYD2 and FXYD4 on the apparent Na(+) affinity of Na,K-ATPase. The mutational analysis is in good agreement with a docking model of the Na,K-ATPase/FXYD7 complex, which also predicts the importance of Phe(956), Glu(960), Leu(964), and Phe(967) in subunit interaction. In conclusion, by using mutational analysis and modeling, we show that TM9 of the Na,K-ATPase alpha subunit exposes one face of the helix that interacts with FXYD proteins and contributes to the stable interaction with FXYD proteins, as well as mediating the effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase.
Resumo:
Introduction: Epstein-Barr Virus(EBV) has been repeatedly associatedwith multiple sclerosis (MS). Wehave previously shown that there is ahigh peripheral as well as intrathecalactivation of EBV-, but not cytomegalovirus(CMV)-specific CD8+ Tcells, early in the course of MS,strengthening the link between EBVand MS. However, the trigger of thisincreased EBV-specific CD8+ T cellresponse remains obscure. It could resultfrom a higher EBV viral load. Alternatively,it could be due to an intrinsicallydeficient EBV-specificCTL response, cytotoxic granulesmediated.Thus, we performed anin-depth study of the phenotype of exvivo EBV- and CMV-specific CD8+T cells in MS patients and control patients,assessing their cytotoxic activity.Methods:We analyzed the profileof cytotoxic granules in EBV- andCMV-specific CD8+ T cells in a cohortof 13 early MS patients, 20 lateMS, 30 other neurological diseases(OND) patients and 7 healthy controlsubjects. Ex vivo analysis of EBV- orCMV-specific CD8+ T cells was performedusing HLA class I/tetramercomplexes coupled to CCR7 andCD57 markers in conjunction withperforin, granzymes A, BandKstaining.In a sub-cohort of MS patientsand controls, cytotoxic activity ofEBV- and CMV-specific CD8+ Tcells was investigated using a functionalCFSE CTL assay. Results: UsingHLA Class I tetramers for EBVand CMV, we found that the frequencyof EBV- or CMV-specificCD8+ T cells were similar in all studysubjects. Most of EBV- and CMVspecificCD8+Tcells were highly differentiated(CCR7-) and a variousproportion expressed the exhaustionmarker CD57. MS and OND patientshad increased perforin expression inEBV-specific CD8+ T cells. Most importantly,we found that MS patientswith longer disease duration tended tohave lower CTL cytotoxicity as comparedto earlyMSpatients or controls.Conclusions: Effector EBV-specificCD8+ T cells are increased in earlyMS, however their cytotoxic granuleprofile does not seem to be fully alteredand the cytotoxic activity ofthese cells is normal. However, thecytotoxic activity of CTL decreasedin late MS patients suggesting an exhaustionof EBV-specific CD8+ Tcells possibly due to EBV reactivation.This work was supported by theSwiss National Foundation PP00B3-124893, the Swiss Society for MS,and the Biaggi Foundation to RADP.
Resumo:
The freshwater snails Biomphalaria straminea, B. intermedia, B. kuhniana and B. peregrina, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex B. straminea. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: Dde I, Mnl I, Hae III, Rsa I, Hpa II e Alu I. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of Biomphalaria. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.
Resumo:
Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network.