983 resultados para Frequency-Modulated Atomic Force
Resumo:
High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Self-aligned InAs quantum wires (QWRs) or three-dimensional (3D) islands are fabricated on GaAs(331)A substrates by molecular beam epitaxy (MBE). InAs QWRs are selectively grown on the step edges formed by GaAs layers. The surface morphology of InAs nanostructures is carefully investigated by atomic force microscopy (AFM) measurements. Different growth conditions, such as substrate temperature, growth approaches, and InAs coverage, exert a great effect on the morphology of InAs islands. Low substrate temperatures favour the formation of wirelike nanostructures, while high substrate temperatures favour 3D islands. The shape transition is attributed to the trade-off between surface energy and strain energy. A qualitative agreement of our experimental data with the theoretical results derived from the model proposed by Tersoff and Tromp is achieved.
Resumo:
A columnal islands system, which was composed of three layers of self-assembled InAs/GaAs quantum dots (QDs), has been fabricated by solid-source molecular beam epitaxy (MBE) through S-K mode on a (100) semi-insulating GaAs substrate. The effects of the thickness of GaAs space layer, the growth interruption time and the amount of InAs deposition on the emission wavelength of columnal islands were presented. The image of atomic force microscopy (AFM) indicated the columnal islands with high uniformity in size and shape. At room temperature, the emission wavelength of columnal islands with different effective heights was achieved 1.32 and 1.4 mum; however, the emission wavelength of single-layer QDs with normal height was just 1. l mum. It provides a useful and intuitive approach to artificially control the emission wavelength of a QD material system.
Resumo:
We have measured photoluminescence (PL) and time-resolve photoluminescence (TRPL) from InGaN/GaN quantum dots (QDs) grown on passivated GaN surfaces by metalorganic chemical vapor deposition (MOCVD). Strong PL emission was observed from the QDs structure even at room temperature. By comparing the PL and TRPL dependence on temperature, a significant difference between the QD and wetting layer emissions was revealed. The QD emission is characterized by a strong exciton localization effect, which leads to a larger thermal activation energy, a nearly constant radiative lifetime independent of temperature and an unusual temperature behavior of the PL peak energy. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
AlInGaN quaternary epilayers have been grown with various TMGa flows by metalorganic chemical vapor deposition to investigate the influence of growth rate on the structural and optical properties. Triple-axis X-ray diffraction measurements show AlInGaN epilayers have good crystalline quality. Photolummescence (PL) measurements show that the emission intensity of AlInGaN epilayers is twenty times stronger than that of AlGaN epilayer with comparable Al content. V-shaped pits are observed at the surface of AlInGaN epilayers by atomic force microscopy (AFM) and transmission electron microscopy (TEM). High growth rate leads to increased density and size of V-shaped pits, but crystalline quality is not degraded. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A novel approach for positioning InAs islands on GaAs(110) by cleaved-edge overgrowth is reported. The first growth sample contains a strained InxGa1-xAs/GaAs superlattice of varying indium fraction and thickness, which acts as a strain nanopattern for the cleaved edge overgrowth. The formation of aligned islands is observed by means of atomic force microscopy. The ordering of the aligned islands and the structure of a single InAs island are found to depend on the properties of the underlying InxGa1-xAs/GaAs superlattice and molecular beam epitaxy growth conditions.
Resumo:
Optical properties and surface structures of InAs/CaAs self-assembled quantum dots (QDs) grown on 2 nm In-0.2 Ga0.8As and x ML GaAs combined strain-buffer layer were investigated systematically by photoluminescence ( PL) and atomic force microscopy (AFM). The QD density increased from similar to 1.7 x 10(9) cm(-2) to similar to 3.8 x 10(9) cm(-1) due to the decreasing of the lattice mismatch. The combined layer was of benefit to increasing In incorporated into dots and the average height-to-width ratios, which resulted in the red-shift of the emission peaks. For the sample of x = 10 ML, the ground state transition is shifted to 1350 nm at room temperature.
Resumo:
A novel method for positioning of InAs islands on GaAs (110) by cleaved edge overgrowth is reported. The first growth sample contains strained InxGa1-xAs/GaAs superlattice (SL) of varying indium fraction, which acts as a strain nanopattern for the cleaved-edge overgrowth. Atoms incident on the cleaved edge will preferentially migrate to InGaAs regions where favorable bonding sites are available. By this method InAs island chains with lateral periodicity defined by the thickness of InGaAs and GaAs of SL have been realized by molecular beam epitaxy (MBE). They are observed by means of atomic force microscopy (AFM). The strain nanopattern's effect is studied by the different indium fraction of SL and MBE growth conditions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Site-controlled InAs quantum wires were fabricated on cleaved edges of AlGaAs/GaAs superlattices (SLs) by solid source molecular beam epitaxy. The cleaved edge of AlGaAs/GaAs SLs acted as a nanopattern for selective overgrowth after selective etching. By just growing 2.0 ML InAs without high temperature degassing, site-controlled InAs quantum wires were fabricated on the cleaved edge. Furthermore, atomic force microscopy demonstrates the diffusion of In atoms is strong toward the [00 (1) over bar] direction on the (110) surface.
Resumo:
We have successfully grown self-assembled InxGa1-xAs (x = 0.44, 0.47, 0.50) quantum dots (QDs) with high density (> 10(11)/cm(2)) by MBE. The effect of In content on the high-density QD is investigated by atomic force microscopy (AFM) and photoluminescence (PL) spectra. It is found that sample with In-mole-fraction of 0.5 shows small size fluctuation and high PL intensity. The influence of growth temperature on high-density QD is also investigated in our experiment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.
Resumo:
InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we report comparative luminescence properties of multi-layer InGaN quantum dots grown on C- and R-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). High-density InGaN quantum dots (QDs) are formed on GaN templates by decreasing the growth temperature and increasing the adatom hopping-barrier through surface passivation. Atomic force microscopy (AFM) has been employed to estimate the size and height of these dots. Photoluminescence (PL) spectra recorded from (1120) InGaN QDs/(1102) sapphire show much stronger emission intensity compared to spectra recorded from (0001) InGaN QDs/(0001) sapphire. Due to the absence of strong spontaneous polarization and piezoelectric field, such (1150) InGaN QDs in the active layers would lead to high efficiency light emitting devices. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Metalorganic chemical vapor deposition growth of InN on sapphire substrate has been investigated between 400 degrees C and 500 degrees C to seek the growth condition of InN buffer layer, i.e. the first step of realization of the two-step growth method. Ex situ characterization of the epilayers by means of atomic force microscope, scanning electron microscope and X-ray diffraction, coupled with in situ reflectance curves, has revealed different growth circumstances at these temperatures, and conclusion has been reached that the most suitable temperature for buffer growth is around 450 degrees C. In addition, the growth rate of InN at the optimized temperature with regard to different precursor flow rates is studied at length. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Illustrated in this paper are two examples of altering planar growth into self-assembled island formation by adapting experimental conditions. Partial oxidation, undersaturated solution and high temperature change Frank-Van der Merwe (FM) growth of Al0.3Ga0.7As in liquid phase epitaxy (LPE) into isolated island deposition. Low growth speed, high temperature and in situ annealing in molecular beam epitaxy (MBE) cause the origination of InAs/GaAs quantum dots (QDs) to happen while the film is still below critical thickness in Stranski-Krastanow (SK) mode. Sample morphologies are characterized by scanning electron microscopy (SEM) or atomic force microscopy (AFM). It is suggested that such achievements are of value not only to fundamental researches but also to spheres of device applications as well. (c) 2004 Elsevier B.V. All rights reserved.