911 resultados para Flow injection analysis with electrochemical detection
Resumo:
This paper presents a new approach to the transmission loss allocation problem in a deregulated system. This approach belongs to the set of incremental methods. It treats all the constraints of the network, i.e. control, state and functional constraints. The approach is based on the perturbation of optimum theorem. From a given optimal operating point obtained by the optimal power flow the loads are perturbed and a new optimal operating point that satisfies the constraints is determined by the sensibility analysis. This solution is used to obtain the allocation coefficients of the losses for the generators and loads of the network. Numerical results show the proposed approach in comparison to other methods obtained with well-known transmission networks, IEEE 14-bus. Other test emphasizes the importance of considering the operational constraints of the network. And finally the approach is applied to an actual Brazilian equivalent network composed of 787 buses, and it is compared with the technique used nowadays by the Brazilian Control Center. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Leakage reduction in water supply systems and distribution networks has been an increasingly important issue in the water industry since leaks and ruptures result in major physical and economic losses. Hydraulic transient solvers can be used in the system operational diagnosis, namely for leak detection purposes, due to their capability to describe the dynamic behaviour of the systems and to provide substantial amounts of data. In this research work, the association of hydraulic transient analysis with an optimisation model, through inverse transient analysis (ITA), has been used for leak detection and its location in an experimental facility containing PVC pipes. Observed transient pressure data have been used for testing ITA. A key factor for the success of the leak detection technique used is the accurate calibration of the transient solver, namely adequate boundary conditions and the description of energy dissipation effects since PVC pipes are characterised by a viscoelastic mechanical response. Results have shown that leaks were located with an accuracy between 4-15% of the total length of the pipeline, depending on the discretisation of the system model.
Resumo:
A method for the determination of artemether (ART) and its main metabolite dihydroartemisinin (DHA) in plasma employing liquid-phase microextraction (LPME) for sample preparation prior to liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed. The analytes were extracted from 1 nil, of plasma utilizing a two-phase LPME procedure with artemisinin as internal standard. Using the optimized LPME conditions, mean absolute recovery rates of 25 and 32% for DHA and ART, respectively, were achieved using toluene-n-octanol (1:1, viv) as organic phase with an extraction time of 30 min. After extraction, the analytes were resolved within 5 min using a mobile phase consisting of methanol-ammonium acetate (10 mmol L(-1) pH 5.0, 80:20. v/v) on a laboratory-made column based on poly(methyltetradecylsiloxane) attached to a zirconized-silica support. MS-MS detection was employed using an electrospray interface in the positive ion mode. The method developed was linear over the range of 5-1000 ng mL(-1) for both analytes. Precision and accuracy were within acceptable levels of confidence (<15%). The assay was applied to the determination of these analytes in plasma from rats treated with ART. The two-phase LPME procedure is affordable and the solvent consumption was very low compared to the traditional methods of sample preparation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow
Resumo:
A sensitive and reproducible method by microextraction packed sorbent and liquid chromatography with UV detection (MEPS/LC-UV) is described for the determination of new generation antidepressants (sertraline, mirtazapine, fluoxetine, citalopram and paroxetine) in human plasma samples. The MEPS variables, such as sample volume, pH, number of extraction cycles (draw-eject), and desorption conditions (solvent and solvent volume of elution) influenced the MEPS/LC efficiency significantly. Important factors in the optimization of MEPS efficiency, as well as washing steps and carryover effect are discussed. The analyses were carried out using small sample volumes (400 mu L.), and in a short time period (3 min for the entire sample preparation step). The MEPS/LC-UV method was shown to be linear at concentrations ranging from the limit of quantification (LOQ) to 1000 ng mL(-1). The LOQ values ranged from 10 to 25 ng mL(-1). The inter-day precision of the method presented coefficient of the variation ranging from 1.3% to 8.7%. On the basis of analytical validation, it is shown that the MEPS/LC-UV methodology is adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the MEPS/LC-UV method was applied to analysis of plasma samples from elderly depressed patients. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The financial and economic analysis of investment projects is typically carried out using the technique of discounted cash flow (DCF) analysis. This module introduces concepts of discounting and DCF analysis for the derivation of project performance criteria such as net present value (NPV), internal rate of return (IRR) and benefit to cost (B/C) ratios. These concepts and criteria are introduced with respect to a simple example, for which calculations using MicroSoft Excel are demonstrated.
Resumo:
Background: Splanchnic perfusion is prone to early injury and persists despite normalization of global hemodynamic variables in sepsis. Volume replacement guided by oxygen derived variables has been recommended in the management of septic patients. Our hypothesis was that a hypertonic isoneotic solution Would improve the benefits of crystalloids replacement guided by mixed venous oxygen saturation. Methods: Seventeen anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live E. coli in 30 minutes. They were then randomized into three groups: control group (n = 3) bacterial infusion without treatment; normal saline (n = 7), initial fluid replacement with 32 mL/kg of normal saline during 20 minutes; hypertonic solution (n = 7), initial fluid replacement with 4 mL/kg of hypertonic solution during 5 minutes. After 30 and 60 Minutes, additional boluses of normal saline were administered when mixed venous oxygen saturation remained below 70%. Mean arterial pressure, cardiac output; regional blood flows, systemic and regional oxygen-derived variables, and lactate levels were assessed. Animals were observed for 90 minutes and then killed. Hystopathological analysis including apoptosis detection using terminal deoxynucleotidil transferase mediated dUTP-biotin nick end labeling was performed. Results: A hypodynamic septic shock was observed after bacterial infusion. Both the fluid-treated groups presented similar transient benefits in systemic and regional variables. A greater degree of gut epithelial cells apoptosis was observed in normal saline-treated animals. Conclusions: Although normalization of mixed venous oxygen saturation was not associated with restoration of markers of splanchnic or other systemic perfusion variables, the initial fluid savings with hypertonic saline and its latter effect on gut apoptosis may be of interest in sepsis management.
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.
Resumo:
The analysis of opiates is of vital interest in drug abuse monitoring and research. This review presents a general overview of the electrochemical methods used for detection and quantification of opiates in a variety of matrices. Emphasis has been placed on the voltammetric methods used for study and determination of morphine, codeine, and heroin. Specific issues that need to be solved and better explained as well as future trends in the use of electrochemical methods in the examination of opiates are also discussed.
Resumo:
Aflowinjection squarewave cathodic stripping voltammetric method has been developed for the determination of sertraline in a pharmaceutical preparation. The method shows linearity between peak current intensity and sertraline concentration for the interval between 0.20×10−6 and 1.20×10−6 mol L−1. Limits of detection and quantification were found to be 1.5×10−7 and 5.0×10−7 mol L−1, respectively. Up to 70 samples per hour can be analysed with a good precision (R.S.D. = 2.5%). The proposed method was successfully applied to the determination of sertraline in a commercial product. In the voltammetric determination of sertraline in flow, a high sample rate is obtained at reduced costs, opening the possibility to compete with the chromatographic methods generally used for this analysis.
Resumo:
QuEChERS original method was modified into a new version for pesticides determination in soils. The QuEChERS method is based on liquid–liquid portioning with ACN and was followed by cleanup step using dispersive SPE and disposable pipette tips. Gas chromatographic separation with MS detection was carried out for pesticides quantification. The method was validated using recovery experiments for 36 multiclass pesticides. Mean recoveries of pesticides at each of the four spiking levels between 10–300 µg/kg of soil ranged from 70–120% for 26 pesticides with RSD values less than 15%. The method achieved low limit of detection less than 7.6 µ g/kg. Matrix effects were observed for 13 pesticides. Matrix effects were compensated by using matrix-matched calibration. The method was applied successfully using d-SPE or DPX in the analysis of the pesticides in soils from organic farming and integrated pest management.
Resumo:
Celiac disease (CD) is a gluten-induced autoimmune enteropathy characterized by the presence of antibodies against gliadin (AGA) and anti-tissue transglutaminase (anti-tTG) antibodies. A disposable electrochemical dual immunosensor for the simultaneous detection of IgA and IgG type AGA and antitTG antibodies in real patient’s samples is presented. The proposed immunosensor is based on a dual screen-printed carbon electrode, with two working electrodes, nanostructured with a carbon–metal hybrid system that worked as the transducer surface. The immunosensing strategy consisted of the immobilization of gliadin and tTG (i.e. CD specific antigens) on the nanostructured electrode surface. The electrochemical detection of the human antibodies present in the assayed serum samples was carried out through the antigen–antibody interaction and recorded using alkaline phosphatase labelled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions was used as the substrate. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with commercial ELISA kits indicating that the developed sensor can be a good alternative to the traditional methods allowing a decentralization of the analyses towards a point-of-care strategy.
Resumo:
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centres and universities (http://www.em3e.eu)