929 resultados para FEEDBACK SEMICONDUCTOR-LASERS
Resumo:
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width similar to 5 nm, the simulated ON current is found to be in the range of 265 mu A-280 mu A with an ON/OFF ratio 7.1 x 10(6)-7.4 x 10(6) for a V-DD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%. (C) 2014 AIP Publishing LLC.
Resumo:
Topological defects play an important role in the melting phenomena in two-dimensions. In this work, we report experimental observation of topological defect induced melting in two-dimensional electron systems (2DES) in the presence of strong Coulomb interaction and disorder. The phenomenon is characterised by measurement of conductivity which goes to zero in a Berezinskii-Kosterlitz-Thouless like transition. Further evidence is provided via low-frequency conductivity noise measurements.
Resumo:
Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.
Resumo:
Using idealized one-dimensional Eulerian hydrodynamic simulations, we contrast the behaviour of isolated supernovae with the superbubbles driven by multiple, collocated supernovae. Continuous energy injection via successive supernovae exploding within the hot/dilute bubble maintains a strong termination shock. This strong shock keeps the superbubble over-pressured and drives the outer shock well after it becomes radiative. Isolated supernovae, in contrast, with no further energy injection, become radiative quite early (less than or similar to 0.1Myr, tens of pc), and stall at scales less than or similar to 100 pc. We show that isolated supernovae lose almost all of their mechanical energy by 1 Myr, but superbubbles can retain up to similar to 40 per cent of the input energy in the form of mechanical energy over the lifetime of the star cluster (a few tens of Myr). These conclusions hold even in the presence of realistic magnetic fields and thermal conduction. We also compare various methods for implementing supernova feedback in numerical simulations. For various feedback prescriptions, we derive the spatial scale below which the energy needs to be deposited in order for it to couple to the interstellar medium. We show that a steady thermal wind within the superbubble appears only for a large number (greater than or similar to 10(4)) of supernovae. For smaller clusters, we expect multiple internal shocks instead of a smooth, dense thermalized wind.
Resumo:
This article highlights different synthetic strategies for the preparation of colloidal heterostructured nanocrystals, where at least one component of the constituent nanostructure is a semiconductor. Growth of shell material on a core nanocrystal acting as a seed for heterogeneous nucleation of the shell has been discussed. This seeded-growth technique, being one of the most heavily explored mechanisms, has already been discussed in many other excellent review articles. However, here our discussion has been focused differently based on composition (semiconductor@semiconductor, magnet@semiconductor, metal@semiconductor and vice versa), shape anisotropy of the shell growth, and synthetic methodology such as one-step vs. multi-step. The relatively less explored strategy of preparing heterostructures via colloidal sintering of different nanostructures, known as nanocrystal-fusion, has been reviewed here. The ion-exchange strategy, which has recently attracted huge research interest, where compositional tuning of nanocrystals can be achieved by exchanging either the cation or anion of a nanocrystal, has also been discussed. Specifically, controlled partial ion exchange has been critically reviewed as a viable synthetic strategy for the fabrication of heterostructures. Notably, we have also included the very recent methodology of utilizing inorganic ligands for the fabrication of heterostructured colloidal nanocrystals. This unique strategy of inorganic ligands has appeared as a new frontier for the synthesis of heterostructures and is reviewed in detail here for the first time. In all these cases, recent developments have been discussed with greater detail to add upon the existing reviews on this broad topic of semiconductor-based colloidal heterostructured nanocrystals.
Resumo:
A link level reliable multicast requires a channel access protocol to resolve the collision of feedback messages sent by multicast data receivers. Several deterministic media access control protocols have been proposed to attain high reliability, but with large delay. Besides, there are also protocols which can only give probabilistic guarantee about reliability, but have the least delay. In this paper, we propose a virtual token-based channel access and feedback protocol (VTCAF) for link level reliable multicasting. The VTCAF protocol introduces a virtual (implicit) token passing mechanism based on carrier sensing to avoid the collision between feedback messages. The delay performance is improved in VTCAF protocol by reducing the number of feedback messages. Besides, the VTCAF protocol is parametric in nature and can easily trade off reliability with the delay as per the requirement of the underlying application. Such a cross layer design approach would be useful for a variety of multicast applications which require reliable communication with different levels of reliability and delay performance. We have analyzed our protocol to evaluate various performance parameters at different packet loss rate and compared its performance with those of others. Our protocol has also been simulated using Castalia network simulator to evaluate the same performance parameters. Simulation and analytical results together show that the VTCAF protocol is able to considerably reduce average access delay while ensuring very high reliability at the same time.
Resumo:
Phosphorene, a two-dimensional analog of black phosphorous, has been a subject of immense interest recently, due to its high carrier mobilities and a tunable bandgap. So far, tunability has been predicted to be obtained with very high compressive/tensile in-plane strains, and vertical electric field, which are difficult to achieve experimentally. Here, we show using density functional theory based calculations the possibility of tuning electronic properties by applying normal compressive strain in bilayer phosphorene. A complete and fully reversible semiconductor to metal transition has been observed at similar to 13.35% strain, which can be easily realized experimentally. Furthermore, a direct to indirect bandgap transition has also been observed at similar to 3% strain, which is a signature of unique band-gap modulation pattern in this material. The absence of negative frequencies in phonon spectra as a function of strain demonstrates the structural integrity of the sheets at relatively higher strain range. The carrier mobilities and effective masses also do not change significantly as a function of strain, keeping the transport properties nearly unchanged. This inherent ease of tunability of electronic properties without affecting the excellent transport properties of phosphorene sheets is expected to pave way for further fundamental research leading to phosphorene-based multi-physics devices.
Resumo:
In contemporary orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE), LTE-Advanced, and WiMAX, a codeword is transmitted over a group of subcarriers. Since different subcarriers see different channel gains in frequency-selective channels, the modulation and coding scheme (MCS) of the codeword must be selected based on the vector of signal-to-noise-ratios (SNRs) of these subcarriers. Exponential effective SNR mapping (EESM) maps the vector of SNRs into an equivalent flat-fading SNR, and is widely used to simplify this problem. We develop a new analytical framework to characterize the throughput of EESM-based rate adaptation in such wideband channels in the presence of feedback delays. We derive a novel accurate approximation for the throughput as a function of feedback delay. We also propose a novel bivariate gamma distribution to model the time evolution of EESM between the times of estimation and data transmission, which facilitates the analysis. These are then generalized to a multi-cell, multi-user scenario with various frequency-domain schedulers. Unlike prior work, most of which is simulation-based, our framework encompasses both correlated and independent subcarriers and various multiple antenna diversity modes; it is accurate over a wide range of delays.
Resumo:
Contemporary cellular standards, such as Long Term Evolution (LTE) and LTE-Advanced, employ orthogonal frequency-division multiplexing (OFDM) and use frequency-domain scheduling and rate adaptation. In conjunction with feedback reduction schemes, high downlink spectral efficiencies are achieved while limiting the uplink feedback overhead. One such important scheme that has been adopted by these standards is best-m feedback, in which every user feeds back its m largest subchannel (SC) power gains and their corresponding indices. We analyze the single cell average throughput of an OFDM system with uniformly correlated SC gains that employs best-m feedback and discrete rate adaptation. Our model incorporates three schedulers that cover a wide range of the throughput versus fairness tradeoff and feedback delay. We show that, for small m, correlation significantly reduces average throughput with best-m feedback. This result is pertinent as even in typical dispersive channels, correlation is high. We observe that the schedulers exhibit varied sensitivities to correlation and feedback delay. The analysis also leads to insightful expressions for the average throughput in the asymptotic regime of a large number of users.
Resumo:
Practical orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE), exploit multi-user diversity using very limited feedback. The best-m feedback scheme is one such limited feedback scheme, in which users report only the gains of their m best subchannels (SCs) and their indices. While the scheme has been extensively studied and adopted in standards such as LTE, an analysis of its throughput for the practically important case in which the SCs are correlated has received less attention. We derive new closed-form expressions for the throughput when the SC gains of a user are uniformly correlated. We analyze the performance of the greedy but unfair frequency-domain scheduler and the fair round-robin scheduler for the general case in which the users see statistically non-identical SCs. An asymptotic analysis is then developed to gain further insights. The analysis and extensive numerical results bring out how correlation reduces throughput.
Resumo:
Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.
Resumo:
Cooperative relaying combined with selection has been extensively studied in the literature to improve the performance of interference-constrained secondary users in underlay cognitive radio (CR). We present a novel symbol error probability (SEP)-optimal amplify-and-forward relay selection rule for an average interference-constrained underlay CR system. A fundamental principle, which is unique to average interference-constrained underlay CR, that the proposed rule brings out is that the choice of the optimal relay is affected not just by the source-to-relay, relay-to-destination, and relay-to-primary receiver links, which are local to the relay, but also by the direct source-to-destination (SD) link, even though it is not local to any relay. We also propose a simpler, practically amenable variant of the optimal rule called the 1-bit rule, which requires just one bit of feedback about the SD link gain to the relays, and incurs a marginal performance loss relative to the optimal rule. We analyze its SEP and develop an insightful asymptotic SEP analysis. The proposed rules markedly outperform several ad hoc SD link-unaware rules proposed in the literature. They also generalize the interference-unconstrained and SD link-unaware optimal rules considered in the literature.
Resumo:
A facile methodology for synthesizing Au-Cu2S hybrid nanoparticles is presented. Au-Cu2S nanoparticles have application in visible light driven photocatalytic degradation of dyes. Detailed microstructural and compositional characterization illustrated that the hybrid nanoparticles are composed of cube shaped Au-Cu solid solution and hemispherical shaped Cu2S phases. Investigation of nanoparticles extracted at different stages of the synthesis process revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu-thiolate complex. In the subsequent stages, the Au nanoparticles get adsorbed onto the Cu-thiolate complex which is followed by the decomposition of the Cu-thiolate complex to form Au-Cu2S hybrid nanoparticles. This study also illustrates that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle.
Resumo:
Eu3+-activated BaMoO4 phosphors were synthesized by the nitrate citrate gel combustion method. The Rietveld refinement analysis confirmed that all the compounds were crystallized in the scheelite-type tetragonal structure with I4(1)/a (No. 88) space group. Photoluminescence (PL) spectra of BaMoO4 phosphor reveals broad emission peaks at 465 and 605 nm, whereas the Eu3+-activated BaMoO4 phosphors show intense 615 nm (D-5(0) -> F-7(2)) emission peak. Judd-Ofelt theory was applied to evaluate the intensity parameters (Omega(2), Omega(4)) of Eu3+-activated BaMoO4 phosphors. The transition probabilities (A(T)), radiative lifetime (tau(rad)), branching ratio (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were investigated by using the intensity parameters. CIE color coordinates confirmed that the BaMoO4 and Eu3+-activated BaMoO4 phosphors exhibit white and red luminescence, respectively. The obtained results revealed that the present phosphors can be a potential candidate for red lasers and white LEDs applications. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO2 (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO2/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO2/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights. (C) 2015 Author(s).