999 resultados para Double-hybride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To ensure genomic integrity, dividing cells implement multiple checkpoint pathways during the course of the cell cycle. In response to DNA damage, cells may either halt the progression of the cycle (cell cycle arrest) or undergo apoptosis. This choice depends on the extent of damage and the cell's capacity for DNA repair. Cell cycle arrest induced by double-stranded DNA breaks relies on the activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell cycle effectors (e.g., Chk2 and p53) to inhibit cell cycle progression. ATM is an S/T-Q directed kinase that is critical for the cellular response to double-stranded DNA breaks. Following DNA damage, ATM is activated and recruited to sites of DNA damage by the MRN protein complex (Mre11-Rad50-Nbs1 proteins) where ATM phosphorylates multiple substrates to trigger a cell cycle arrest. In cancer cells, this regulation may be faulty and cell division may proceed even in the presence of damaged DNA. We show here that the RSK kinase, often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that RSK disrupts the binding of the MRN complex to DSB DNA. RSK can directly phosphorylate the Mre11 protein at Ser 676 both in vitro and in intact cells and can thereby inhibit loading of Mre11 onto DSB DNA. Accordingly, mutation of Ser 676 to Ala can reverse inhibition of the DSB response by RSK. Collectively, these data point to Mre11 as an important locus of RSK-mediated checkpoint inhibition acting upstream of ATM activation.

The phosphorylation of Mre11 on Ser 676 is antagonized by phosphatases. Here, we screened for phosphatases that target this site and identified PP5 as a candidate. This finding is consistent with the fact that PP5 is required for the ATM-mediated DNA damage response, indicating that PP5 may promote DSB-induced, ATM-dependent DNA damage response by targeting Mre11 upstream of ATM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. The pseudorabies strain PRV152 expresses the enhanced green fluorescent protein (eGFP) reporter gene and only crosses functional synapses retrogradely through the hierarchical sequence of synaptic connections away from the infection site(2,3). Other PRV strains have distinct microbiological properties and may be transported in both directions (PRV-Becker and PRV-Kaplan)(4,5). This protocol will deal exclusively with PRV152. By delivering the virus at a peripheral site, such as muscle, it is possible to limit the entry of the virus into the brain through a specific set of neurons. The resulting pattern of eGFP signal throughout the brain then resolves the neurons that are connected to the initially infected cells. As the distributed nature of transsynaptic tracing with pseudorabies virus makes interpreting specific connections within an identified network difficult, we present a sensitive and reliable method employing biotinylated dextran amines (BDA) and cholera toxin subunit b (CTb) for confirming the connections between cells identified using PRV152. Immunochemical detection of BDA and CTb with peroxidase and DAB (3, 3'-diaminobenzidine) was chosen because they are effective at revealing cellular processes including distal dendrites(6-11).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present randomized, placebo-controlled double-blind multicenter study included a population of 36 subjects with frequent recurrences (at least once a month) of herpes labialis. Most of the patients had failed to respond adequately to previous treatment with other therapeutic tools, including acyclovir. Either 50 mg of thymopentin or of placebo was administered 3 times a week, by the subcutaneous route, for 6 weeks. Subsequently, the patients were observed for nearly 6 months on the average. The results achieved with thymopentin for the individual parameters were significantly superior to those obtained with placebo; thus significant improvement was seen in patients on thymopentin in the duration of the longest symptomfree period (prolonged from 2.1 weeks to 20.9 weeks, p = 0.000), in the number of relapses (reduced from 1.6 to 0.4 episodes/month, p = 0.001), and in the total duration of herpes symptoms per month (shortened from 2.0 to 0.3 weeks, p = 0.000). Placebo treatment also resulted in considerable improvement (p < 0.05 or 0.01), but was significantly inferior to the improvement obtained with thymopentin. The longest symptomfree period in the placebo group was prolonged from 2.4 to 11.2 weeks. The number of relapses per month was reduced from 1.4 to 0.8, and the total duration of herpes symptoms per month from 2 to 0.9 weeks. The results of intergroup analyses, in which the observed parameters and the improvement achieved in either group were compared, significantly favored thymopentin treatment. The effect of thymopentin was in all but one parameters superior to that of placebo and highly significant (p < 0.01). © 1985 Humana Press Inc.

Relevância:

20.00% 20.00%

Publicador: