704 resultados para Discrete mathematics
Resumo:
In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.
Resumo:
The aim of this paper is to discuss teachers' perceptions of change in their thought and/or practice over time and their perceptions of what kind of experiences or challenges might have influenced those changes. Two mathematics teaching life histories of Brazilian teachers are examined, considering a context of curriculum development in the state of São Paulo, Brazil. Reflection on teachers' thought and practice and interest in their own development, including interest in their own learning of mathematics, seemed to be the most important internal aspects influencing change and development. Close support seemed to be the most important external aspect. The retrospective analysis put a good face on personal change and development. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We show that the multi-boson KP hierarchies possess a class of discrete symmetries linking them to discrete Toda systems. These discrete symmetries are generated by the similarity transformation of the corresponding Lax operator. This establishes a canonical nature of the discrete transformations. The spectral equation, which defines both the lattice system and the corresponding Lax operator, plays a key role in determining pertinent symmetry structure. We also introduce the concept of the square root lattice leading to a family of new pseudo-differential operators with covariance under additional Backlund transformations.
Resumo:
The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value
Resumo:
This chapter presents a collaborative experience between two neighbouring countries from South America: Argentina and Brazil. Our purpose is to share a model of international collaboration that we consider to be an alternative to the classical movement of early mathematical and scientific knowledge between East and West and between North and South. We start our chapter with a general discussion about the phenomenon of globalization considering some local examples. We characterize our collaboration exploring the tensions and difficulties we faced along our own professional development at the local as well as the international level. We describe the development of our prior collaborative work that established the foundation for our international collaboration portraying the local mathematics education communities. We refer to some balances that were created among our relationships, the expansion of our collaborative network, and how this particular collaboration allows us to contribute to the regional field and inform the international one. We discuss the way that the search for balance and symmetry, or at least a complementary asymmetry in our collaborative relationships, has led us to generate a genuine and equitable collaboration.
Resumo:
Dichotomic maps are considered by means of the stability and asymptotic stability of the null solution of a class of differential equations with argument [t] via associated discrete equations, where [.] designates the greatest integer function.
Resumo:
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.
Resumo:
The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
A new procedure is given for the study of stability and asymptotic stability of the null solution of the non autonomous discrete equations by the method of dichotomic maps, which it includes Liapunov's Method asa special case. Examples are given to illustrate the application of the method.
Resumo:
This is a philosophical essay on a phenomenological way to understand and to work out Mathematics Education. Its philosophical grounding is the Husserlian work, focusing on its key word "going to the things themselves" in order to keep us away from the theoretical educational truth, took as the unique one. We assume the attitude of being on the life-world with the students and Mathematics as a field of research and practice that show and express themselves through lived experiences and through language. We assume to be in search of understanding of education, learning and Mathematics, as we take care, consciously, of what we are doing and saying in the same movement of saying and doing it.