905 resultados para Discounted Cash Flow
Resumo:
The steady flow of a power law fluid in annuli with porous walls is investigated. The solution for the axial velocity component is obtained as a power series in terms of the cross flow Reynolds number, the first term of the series giving the solution for the case of the solid wall annulus. The cross flow is restricted to be such that the rate of injection of fluid at one wall of the annulus is equal to the rate of suction at the other wall and also we have considered only very small values of the cross flow velocity. The velocity profiles are drawn for different values of n and for different gaps and the results are discussed in detail. The behaviour of the average flux, in different eases is also discussed.
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
The flow of an incompressible non-Newtonian viscous fluid contained between two torsionally oscillating infinite parallel discs is investigated. The two specific cases studied are (i) one disc only oscillates while the other is at rest and (ii) both discs oscillate with the same frequency and amplitude but in opposite directions. Assuming that the amplitude of oscillation,Ω/n, is small and neglecting the squares and higher powers ofΩ/n, the equations of motion have been solved exactly for velocity and pressure satisfying all the boundary conditions. The effect of both positive and negative coefficients of cross-viscosity on the steady components of the flow has been represented graphically.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.
Resumo:
The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.
Resumo:
Aspects of large-scale organized structures in sink flow turbulent and reverse-transitional boundary layers are studied experimentally using hot-wire anemometry. Each of the present sink flow boundary layers is in a state of 'perfect equilibrium' or 'exact self-preservation' in the sense of Townsend (The Structure of Turbulent Shear Flow, 1st and 2nd edns, 1956, 1976, Cambridge University Press) and Rotta (Progr. Aeronaut. Sci., vol. 2, 1962, pp. 1-220) and conforms to the notion of 'pure wall-flow' (Coles, J. Aerosp. Sci., vol. 24, 1957, pp. 495-506), at least for the turbulent cases. It is found that the characteristic inclination angle of the structure undergoes a systematic decrease with the increase in strength of the streamwise favourable pressure gradient. Detectable wall-normal extent of the structure is found to be typically half of the boundary layer thickness. Streamwise extent of the structure shows marked increase as the favourable pressure gradient is made progressively severe. Proposals for the typical eddy forms in sink flow turbulent and reverse-transitional flows are presented, and the possibility of structural self-organization (i.e. individual hairpin vortices forming streamwise coherent hairpin packets) in these flows is also discussed. It is further indicated that these structural ideas may be used to explain, from a structural viewpoint, the phenomenon of soft relaminarization or reverse transition of turbulent boundary layers when subjected to strong streamwise favourable pressure gradients. Taylor's 'frozen turbulence' hypothesis is experimentally shown to be valid for flows in the present study even though large streamwise accelerations are involved, the flow being even reverse transitional in some cases. Possible conditions, which are required to be satisfied for the safe use of Taylor's hypothesis in pressure-gradient-driven flows, are also outlined. Measured convection velocities are found to be fairly close to the local mean velocities (typically 90% or more) suggesting that the structure gets convected downstream almost along with the mean flow.
Resumo:
Accurate mass flow measurement is very important in various monitoring and control applications. This paper proposes a novel method of fluid flow measurement by compensating the pressure drop across the ends of measuring unit using a compensating pump. The pressure drop due to the flow is balanced by a feedback control loop. This is a null-deflection type of measurement. As the insertion of such a measuring unit does not affect the functioning of the systems, this is also a non-disruptive flow measurement method. The implementation and design of such a unit are discussed. The system is modeled and simulated using the bond graph technique and it is experimentally validated. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we derive a fast, novel time-domain algorithm to compute the nth-order moment of the power spectral density of the photoelectric current as measured in laser-Doppler flowmetry (LDF). It is well established that in the LDF literature these moments are closely related to fundamental physiological parameters, i.e. concentration of moving erythrocytes and blood flow. In particular, we take advantage of the link between moments in the Fourier domain and fractional derivatives in the temporal domain. Using Parseval's theorem, we establish an exact analytical equivalence between the time-domain expression and the conventional frequency-domain counterpart. Moreover, we demonstrate the appropriateness of estimating the zeroth-, first- and second-order moments using Monte Carlo simulations. Finally, we briefly discuss the feasibility of implementing the proposed algorithm in hardware.
Resumo:
The unsteady laminar mixed convection boundary layer flow of a thermomicropolar fluid over a long thin vertical cylinder has been studied when the free stream velocity varies with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite difference scheme in combination with the quasilinearization technique. The results show that the buoyancy, curvature and suction parameters, in general, enhance the skin friction, heat transfer and gradient of microrotation, but the effect of injection is just opposite. The skin friction and heat transfer for the micropolar fluid are considerably less than those for the Newtonian fluids. The effect of microrotation parameter is appreciable only on the microrotation gradient. The effect of the Prandtl number is appreciable on the skin friction, heat transfer and gradient of microtation.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.